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PLANE ANALYTIC GEOMETRY

INTRODUCTION

DIRECTED LINE-SEGMENTS. PROJECTIONS

Elementary Geometry, as it is studied in the high school

to-day, had attained its present development at the time when
Greek culture was at its height. The first systematic treat-

ment of the subject which has come down to us was written

by Euclid about 300 b.c.

Algebra, on the other hand, was unknown to the Greeks.

Its beginnings are found among the Hindus, to whom the so-

called Arabic system of numerals may also be due. It came

into Western Europe late, and not till the close of the middle

ages was it carried to the point which is marked by any school

book of to-day that treats this subject.

When scholars had once possessed themselves of these two

subjects— Geometry and Algebra— the next step was quickly

taken. The renowned philosopher and mathematician, Kene
Descartes, in his Geometrie of 1637, showed how the methods

of algebra could be applied to the study of geometry. He
thus became the founder of Analytic Geometry.#

The " originals " and the locus problems of Elementary

Geometry depend for their solution almost wholly on ingenu-

ity. There are no general methods whereby one can be sure

of solving a new problem of this class. Analytic Geometry,

*Also called Cartesian Geometry, from the Latinized form of his name,

Cartesius.
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2 ANALYTIC GEOMETRY

on the other hand, furnishes universal methods for the treat-

ment of such problems ; moreover, these methods make pos-

sible the study of further problems not thought of by the

ancients, but lying at the heart of modern mathematics and

mathematical physics. Indeed, these two great subjects owe
their very existence to the new geometry and the Calculus.

The question of how to make use in geometry of the nega-

tive, as well as the positive, numbers is among the first which

must be answered in applying algebra to geometry. The solu-

tion of this problem will become clear in the following

paragraphs.

1. Directed Line-Segments. Let an indefinite straight line,

L, be given, and let two points, A and B, be marked on L.

.

7? r Then the portion of L which is

1 1 1

—

bounded by A and B is what is

^ C J5
called in Plane Geometry a line-

1
1
~~—

•

segment, and is written as AB.

C A B ^et a tn^r(^ Pomt, C, be marked
' ' ' — on L. Then three cases arise,

"Ftp 1

as indicated in the figure. Cor-

responding to these three cases we have :

(a) AB + BC= AC;

(b) AB-CB = AC;

(c) CB-AB=CA.

Three other cases will arise if the original points A and B are

taken in the opposite order on the line. Let the student

write down the three corresponding equations.

A unification of all these cases can be effected by means of

an extension of the concept of a line-segment. We no longer

consider the line-segments AB and BA as identical, but we

distinguish between them by giving each a direction or sense.

Thus, AB shall be directed from A to B and BA shall be

directed from B to A, i.e. oppositely to AB. These directed
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line-segments we denote by AB and BA, to distinguish them

from the ordinary, or undirected, line-segments.

We may, for the moment, interpret the directed line-seg-

ment AB as the act of walking from A to B ; then BA repre-

sents the act of walking from B to A. With this in mind, let

us return to Fig. 1 and consider the directed line-segments

AB, BG, and AC. We have, in all three cases represented by
Fig. 1, and also in the other three

:

AB + BC=AC,
since walking from A to B and then walking from B to G is

equivalent, with reference to the point reached, to walking

from A to C.

Accordingly, we unify all six cases by defining, as the sum
of the directed line-segments AB and BG, the directed liue-

segment AG:

(1) AB + BC=AG.
From this definition it follows that, if A, B, G, and D are

any four points of L,

(2) AB + BC+CD = AD.

For, by (1), the sum of the first two terms in (2) is AG, and,

by the definition, the sum of AG and CD is AD.
Similarly, if the points M, MuM2 ,

• • •, -M~n_i, N are any points

of L, we have

(3) MM1 + M,M2 + • • • +Mn.2Mn_x +M^N= MN.

Given two directed line-segments on the same line or on

two parallel lines, we say that these two directed line-segments

are equal, if they have equal lengths and the same direction or

sense.

2. Algebraic Representation of Directed Line-Segments. On
the line L let one of the two opposite directions or senses be

chosen arbitrarily and defined as the positive direction or sense

of L ; and let the other be called the negative direction or sense.
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A directed line-segment AB, which lies on L, is then called

positive, if its sense is the same as the positive sense of L, and

negative, if its sense is the same as the negative sense of L.

To such a directed line-segment AB we assign a number,

which we shall also represent by AB, as follows. If I is the

length of the ordinary line-segment AB, then

AB = I, if AB is a positive line-segment

;

AB = — l, if AB is a negative line-segment.

If AB = I, then BA = - Z ; and if JjB = - Z, then ~BA= I.

In either case

(1) AB + BA = or ^5 = -^Z.

Since the act of walking from A to B is nullified by the act

of walking from B to A, we might have arrived at equations

(1) from consideration of the line-segments themselves, instead

of by use of the numbers which represent them.

It is easy to verify the fact that equations (1), (2), and (3)

of the preceding paragraph, which relate to directed line-seg-

ments, hold for the corresponding numbers. Consequently,

no error or confusion arises from using the same notation AB
for both the directed line-segment and the number correspond-

ing to it. We shall, however, adopt a still simpler notation,

dropping the dash altogether and writing henceforth AB to

denote, not merely the directed line-segment or the number
corresponding to it, but also the line-segment itself, stating

explicitly what is meant, unless the meaning is clear from the

context.

Absolute Value. It is often convenient to be able to express

merely the length of a directed line-segment, AB. The nota-

tion for this length is
|
AB

|

; read :
" the absolute value of

AB."
The numerical, or absolute, value of a number, a, is

denoted in the same way : \a\. Thus,
|
— 3 1 = 3. Of course,

13|=3.
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3. Projection of a Broken Line. By the projection of a point

P on a line L is meant the foot, M, of the perpendicular

dropped from P on L. If P lies on L, it is its own projection

on L.

Let PQ be any directed line-segment, and let L be an arbi-

trary line. Let M and N be respectively the projections of

P and Q on X. The projection

of the directed line-segment PQ
on i shall be defined as the di-

rected line-segment JOT", or the

number which represents MN al-

gebraically. Since MN— — NM,
it follows that

Proj. PQ =

M
Fig.

N
o

Proj. QP.

If PQ lies on a line perpendicular to L, the points M and
37" coincide, and we say that the projection MN oi PQ on L is

zero. Such a directed line-segment MN, whose end-points are

identical, we may call a nil-segment ; to it corresponds the

number zero. It is evident that in taking the sum of a num-
ber of directed line-segments, any of them which are nil-

segments may be disregarded, just as, in taking the sum of a

set of numbers, any of them
which are zero may be disre-

garded.

Consider an arbitrary

broken line PPXP^ P„_iQ.

By its projection on L is

meant the sum of the pro-

jections of the directed line-

M M
2
M

x
M,

Fig. 6

segments PP
1} PiP2, Pn-iQ, or

MMX + M,M2 + • + Mn_xN.

This sum has the same value as MN, the projection on L
of the directed line-segment PQ ; cf . § 1, (3) :

MMX -f MYM2 + • • • + Mn_xN= MN.



6 ANALYTIC GEOMETRY

Hence the theorem

:

Theorem 1. Hie sum of the projections on L of the segments

PPX , P1P2, • • -, Pn-\Q of a broken line joining P with Q is equal

to the projection on L of the directed line-segment PQ.

If, secondly, the same points P and Q be joined by another

broken line, PP[P'2 • • • P'm-iQ) the projection of the latter on

L will also be equal to MN:

MM[ + M[Mf

2+ ... + Jf^_1iV= MN.

Hence the theorem

:

Theorem 2. Given two broken lines having the same extremi-

ties,

PP1P2 Pn-iQ ^d PP[P[ • PL-iQ-

Let L be an arbitrary straight line. Then the sum of the pro-

jections on L of the segments PP1} P\Pz, • • •, Pn-\Q, of ivhich the

first broken line is made up, is equal to the corresponding sum

for the second broken line.



CHAPTER I

COORDINATES. CURVES AND EQUATIONS

1. Definition of Rectangular Coordinates. Let a plane be

given, in which it is desired to consider points and curves.

Through a point in this plane take two indefinite straight

lines at right angles to each other, and choose on each line a

positive sense.

Let P be any point of the plane. Consider the directed

line-segment OP. Let its projections on the two directed lines

through be OM and ON. The numbers which represent

algebraically these projections,

that is, the lengths of OM and

ON taken with the proper signs

(cf. Introduction, § 2), are called

the coordinates of P. We shall

denote them by x and y

:

x = OM, y = ON,

and write them in parentheses

:

(x, y). The first number, x, is

known as the x-coordinate, or

abscissa, of P; the second, y, as the y-coordinate, or ordinate,

of P.

The point is called the origin of coordinates. The directed

lines through are called the axes of coordinates or the coordi-

nate axes ; the one, the axis of x ; the other, the axis of y. It

is customary to take the coordinate axes as in Fig. 1, the axis

of x being positive from left to right, and the axis of y, posi-

tive from below upward. But, of course, the opposite sense

on one or both axes may be taken as positive, and an oblique

7

N

y

P

ai

Fig. 1
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position of the axes which conforms to the definition is legiti-

mate, the essential thing being solely that the axes be taken

perpendicular to each other.

Every point, P, in the plane has definite coordinates, (x, y).

Conversely, to any pair of numbers, x and ?/, corresponds a

point P whose coordinates are (x, y). This point can be con-

structed by layiug off OM=x on the axis of x, erecting a per-

pendicular at M to that axis, and then laying off MP= y.

We might equally well have begun by laying off ON= y on

the axis of y (cf. Fig. 1), and then erected, a perpendicular to

y that axis at N and laid off on it

P NP= x. It shall be understood that

the positive sense on any line parallel

to one of the coordinate axes, such as

jjjL -x the perpendicular to the axis of x at

M, shall be the same as the positive

sense of that axis. For other lines

of the plane there is no general principle governing the choice

of the positive sense.

The coordinates of the origin are (0, 0). Every point on

the axis of x has as its ordinate, and these are the only

points of the plane for which this is true. Hence the axis of

x is represented by the equation

y = 0, (axis of x).

Similarly, the axis of y is represented by the equation

x = 0, (axis of y).

The axes divide the plane into four regions, called quadrants.

The Jirst quadrant is the region included between the positive

axis of x and the positive axis of y ; the second quadrant, the

region between the positive axis of y and the negative axis of

x ; etc. It is clear that the coordinates of a point in the first

quadrant are both positive ; that a point of the second quad-

rant has its abscissa negative and its ordinate positive ; etc.

The system of coordinates just described is known as a sys-

tem of rectangular or Cartesian coordinates.
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EXERCISES

The student should provide himself with some squared

paper for working these and many of the later exercises in

this book. Paper ruled to centimeters and subdivided to mil-

limeters is preferable.

1. Plot the following points, taking 1 cm. as the unit

:

(a) (0,1); (6) (1,0); (c) (1,1);

(d) (1,-1); 00 (-1,-1)5 (/) (2,-3);

W (0,-2}); (ft) (-3.7,0); (i) (-1^, -If);

(J) (-4,3.2); (ft) (3.24, -0.87); (J) (-1,1).

2. Determine the coordinates of the point P in Fig. 1 when
1 in. is taken as the unit of length ; also when 1 cm. is the

unit of length.

3. The same for the point marked by the period in

"Fig. 1."

^^"
2̂
'(x

2)y2 )

2. Projections of a Directed Line-Segment on the Axes. Let

Pit with the coordinates (x1} yi), and P2 : (x2 , y2)* be any two
points of the plane. Con-

sider the directed line-seg- Pi : {xvyJ
ment PiP2« It is required

to find its projections on the

axes.

To do this, draw the

broken line P1OP2 . By In-

troduction, § 3, Th. 1, the
~0

projections of this broken Fig. 3

line on the axes are the

same as those of the directed line-segment PiP2 .

taking first the projections on the axis of x, we have :

Proj. P 2̂ = Proj. PiO + Proj. OP2

Hence,

* We shall frequently use this shorter notation

breviation for " P2 , with the coordinates (sc2, 2/2)-

'

= -Proj. OPx + Proj. OP2 .

Pi '• (»2, 1/2), as an ab-
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But the terms in the last expression are by definition — xv

and flj2 - So

(1) Proj. P1P2 on #-axis = x2 — x1.

Similarly,

(2) Proj . PXP2 on y-axis = y2 - yv

The projections of PXP2 on two lines drawn parallel to the

axes are obviously given by the same expressions.

EXERCISES

1. Plot PXP2 when Px is the point (a) of Ex. 1, § 1, and P2

is (b). Determine the projections from the foregoing formulas,

and verify directly from the figure.

2. The same, when

i) P1
is (e) and P2 is (/)

;

ii) Px is (c) and P2 is (d)
;

iii) Px is (i) and P2 is (I).

3. Distance between Two Points. Let the points be Plf

with the coordinates (xly y{) 9
and P2 : (#2 , y2). Through P,

draw a line parallel to the axis of x and through P2 , a line

parallel to the axis of y\ let Q
r^vVi) denote the point of intersection of

these lines. Then, by the Pytha-

gorean Theorem,
P
i
:{xvyi ] 1_« (1) P^^P^+QPJ,

Fig. 4
or

(2) D^ = (x2 ~xly+(y2 -y1y,

where D denotes the distance between Px
and P2 . Hence

(3) D^^{x2 -xlf+{y2 -yl)\

In the foregoing analysis, we have used P
XQ (and similarly,

QP2) in two senses, namely, i) as the length of the ordinary

line-segment P
XQ of Elementary Geometry ; ii) as the algebraic
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expression x2
— x

x
for the projection PXQ of the directed line-

segment P\P2 on a parallel to the axis of x. Since, however,

these two numbers differ at most in sign, their squares are

equal, and hence equation (2) is equivalent to equation (1).

In particular, P
X
P2 may be parallel to an axis, e. g. the axis

of x. Here, y2 = 3/1, and (3) becomes

D = -s/{x2 -xlf.

The student must not, however, hastily infer that

D = x2
— xx .

It may be that x2
— xx

is negative, and then *

D = — (x2 — #1).

A single formula which covers both cases can be written in

terms of the absolute value (cf. Introduction, § 2) as follows :

(4) D=\x2 -xx \.

EXERCISES

1. Find the distances between the following pairs of points,

expressing the result correct to three significant figures. Draw
a figure each time, showing the points and the line connecting

them, and verify the result by actual measurement.

(a) (2, 1) and (- 2, - 2). (b) (- 7, 6) and (2, - 3).

(c) (13, 5) and (- 2, 5). (d) (7, 3) and (12, 3).

(e) (4, 8) and (4, - 8). (/) (- 1, 2) and (- 1, 6).

2. Find the lengths of the sides of the triangle whose ver-

tices are the points (— 2, 3), (—2, — 1), (4, — 1).

3. How far are the vertices of the triangle in question 2

from the origin ?

* There is no contradiction here, or conflict with the ordinary laws of

algebra. For, the V-Sign always calls for the positive square root, — that

being the definition of the symbol,— and we must see to it in any given

case that we fulfill the contract.
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4. Find the lengths of the diagonals of the convex quadri-

lateral whose vertices are the points (4, 1), (1,3), (—3,1),

(-2,-1).

4. Slope of a Line. By the slope, X, of a line is meant the

trigonometric tangent of the angle, 0, which the line makes

with the positive axis of x :

(1) A. = tan $.

To find the slope of the line,

let Pj, with the coordinates (xlt yx),

and P2 : (x2 , y2) he the extremities

of any directed line-segment PiP2

on the line. Then

^0
Fig. 5

(2)

or

(3)

tan0 = QPo _2/2"-2/i

PiQ x2 --a?!

__2/2"-2/i.

x2
— a?!

If, instead of PxP2y we had taken its opposite, P2Pi, we
should have obtained for X the value (yL

— ^/(^i — #2)- But

this is equal to the value of X given by (3). Thus, X is the

same, whether the line is directed in the one sense or in the

opposite sense. Hence we think of X as the slope of the line

without regard to sense.

Variation of the /Slope. Consider the slopes, A, of different

lines, L, through a given point, P. When L is parallel to the

axis of x, X has the value zero. When L rotates as shown in

the figure, X becomes positive and increases steadily in value.

As L approaches the vertical line L\ X becomes very large,

increasing without limit.

When L passes beyond L\ X changes sign, being still nu-

merically large. As L continues to rotate, X increases alge-

braically through negative values. Finally, when L has again

become parallel to the axis of x, X has increased algebraically

through all negative values and becomes again zero.
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When L is in the position of L', is 90° and tan = A. is

undefined, that is, has no valne. Hence V has no slope. One

often sees the expression : tan 90° = oo, and, in accordance with

it, one might write here, A = oo . This does not mean thatV has

a slope, which is infinite, for " infinity " is not a number. It

is merely a brief and

symbolic way of describ-

ing the behavior of X for

a line L, near to, but not

coincident with V ; it

says that for such a line

A. is numerically very

large : and further that,

when the line L ap-

proaches V as its limit,

A increases numerically

without limit,— that is, FlG
increases numerically be-

yond any preassigned number, as 10,000,000 or 10,000,000 !, and

stays numerically above it.

The Angle 6. In measuring the angle from one line to an-

other, it is essential, first of all, to agree on which direction

of rotation shall be considered as positive. We shall take

always as the positive direction of rotation that from the posi-

tive axis of x to the positive axis of y ; so that the angle from

the positive axis of x to the positive axis of y is -f 90°, and

not - 90°.

The complete definition of is, then, as follows : TJie slope-

angle 6 of a line is the angle from the positive axis of x to the

direction of the line. There are in general two positive values

for less than 360°
; if the smaller of them is denoted by 6, the

other is 180°
-f- 9. Which of these angles is chosen is imma-

terial, since tan (180° -f- 0) = tan • this result is in agreement

with the previous one, to the effect that the slope pertains to

the undirected line without regard to a sense on it.
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The student should now draw a variety of lines, indicating

for each the angle 0, and assure himself that the deduction of

formula (3) holds, not merely when the quantities x2
— x

l
and

V-2
— V\ are positive, but also when one or both are negative.

Right-Handed and Left-Handed Coordinate Systems. For the

choice of axes in Fig. 1, the positive direction for angles is

the counter-clockwise direction. But for

x such a choice as is indicated in the

present figure,— a choice equally legiti-

mate,— it is the clockwise sense which is

positive.

The above formulas apply to either

Fig. 7 system of axes. The first system is

called a right-handed system ; the other,

a left-handed system. We shall ordinarily use a right-handed

system.

Problem. To draiv a line through a given point having a

given slope. In practice, this problem is usually to be solved

on squared paper. The solution will be. sufficiently clearly

indicated by an example or two.

Example 1. To draw a line through the point (—2, 3) hav-

ing the slope — 4.

Proceed along the parallel to the #-axis through the given

point by any convenient distance, as 1 unit, toward the left.*

Then go up the line through this point, parallel to the y-axis,

by 4 times the former distance,— here, 4 units. Thus, a sec-

ond point on the desired line is determined, and the line can

now be drawn with a ruler.

If the given point lay near the edge of the paper, so that

the above construction is inconvenient, it will do just as well

to proceed from the first point toward the right by 1 unit, and

then down by four units.

* The student will follow these constructions step by step on a piece

of squared paper.
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Example 2. To draw a line through the point (1.32, 2.78)

having the slope .6541.

Here, it is clear that we cannot draw accurately enough to

be able to use the last significant figure of the given slope.

Open the compasses to span 10 cm. (if the squared paper is

ruled to cm.) and lay off a distance of 10 cm. to the right on a

parallel to the a>axis through the given point. This parallel

need not actually be drawn. Its intersection, Q, with the cir-

cular arc is all that counts, and this point, Q, can be estimated

and marked. Its distance above the axis of x will be 1 cm.

and 3.2 mm. The error of drawing will be of the order of the

last significant figure, namely, more than ^ mm. and less than

.5 mm.
Next, open the compasses to span 6 cm. and 5.4 mm. Put

the point of the compasses on Q, and lay off the above dis-

tance, 6.54 cm., on a parallel through Q to the y-axis and

above Q. The point B, thus found, will be a second point on

the desired line, which now can be drawn.

EXERCISES

1. The points Pi} P2 , P3 , with the coordinates (2, 5), (7, 3),

(— 3, 7) respectively, lie on a line. Show that the value for

the slope of the line as given by equation (3) is the same, no

matter which two of the three points are used in obtaining it.

2. Find the slopes of the sides of the triangle of Ex. 2, § 3.

3. Find the angles which the sides of that triangle make
with the axes, and hence determine the angles of the triangle.

4. Show that the points (- 2, - 3), (5, - 4), (4, 1), (- 3, 2)

are the vertices of a parallelogram.

5. Draw a line through the point (1, —2) having the

slope 3.

6. Draw a line through the point (—2, — 1) having the

slope — 1J.

7. Draw a line through the point (—1.32, 0.14) having the

slope - .2688.
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ffJ-'CV^)!

P:(oc,y)

5. Mid-Point of a Line-Segment. Let Plt with the coordi-

nates (a,*!, 2/1), and P2 : (x2, y2) be the extremities of a line-seg-

ment. It is desired to find the

jjj
;^2^2) coordinates of the point P which

bisects PiP2 .

Let the coordinates of P be

(#, y). It is evident that the

directed line-segment PXP is

—x equal to the directed line-seg-

ment PP2 . Hence the projec-

tion of P}P on the axis of x, or

Xi, mnst eqnal the projection of PP2 on that axis, or x2
— x

:

Fig. 8

Hence
Xi + x2

2

Similar considerations apply to the projections on the axis

of y, and consequently

v= yi + y* .

2

We have thus obtained the following result : The coordinates

(x
} y) of the point P which bisects the line-segment PiP2 are given

by the equations

:

(1)
xx + x2

2
]

= Vi +
2

EXERCISES

1. Determine the coordinates of the mid-point of each of

the line-segments given by the pairs of points in Ex. 1, § 3.

Draw figures and check your answers.

2. Find the mid-points of the sides of the triangle mentioned

in Ex. 2, § 3, and check by a figure.

3. Determine the coordinates of the mid-point of the line

joining the points (a + b, a) and (a — 6, b).

4. Show that the diagonals of the parallelogram of Ex. 4,

§ 4 bisect each other.
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6. Division of a Line-Segment in Any Ratio.* Let it be re-

quired to find the coordinates (x, y) of the point P which

divides the line-segment PXP2 in an arbitrary ratio, rrii/m2 : t

P1P ==
ml

PP2 m2

'

Obviously the projections of PXP and PP2 on the axis of x

must be in the same ratio, mjm2 , and hence

x — xx _ mt

x2
— x m2

On solving this equation for x, it is found that

„ _ m2x1 + miX2

ra2 + mx

Similar considerations, applied to the projections on the

axis of y, lead to the corresponding formula for y, and thus

the coordinates of P are shown to be the following

:

(1) x = ^2-£i + m&z m2yl ^-m ly2

m2 -f- m 1 m2 + ^i

If mx
and m2 are equal, these formulas reduce to those of

§5.

External Division. It is also possible to find a point P on

the indefinite straight line through P1
and P2 and lying outside

the line-segment P^P}, which makes

P1P=m1

P2P m2

where mx and m2 are any two unequal positive numbers. Here,

a?! — x _ m1

x2
— x m2

* This paragraph may well be omitted till the results are needed in

later work.

t The given numbers mi and m2 may be precisely the lengths P\P
and PP2 ; but in general they are merely proportional respectively to

them, i.e. they are these lengths, each multiplied by the same positive or

negative number.
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On solving this equation for x and the corresponding one for

?/. we find, as the coordinates of the point P, the following

:

(2) x = m2-vi - mi^2
y = m&i — r

"h!h
.

m2 — mi Wh — ^1

The point P is here said to divide the line P^P2 externally in

the ratio 7n
l
/m2 ; and, in distinction, the division in the earlier

case is called internal division. Both formulas, (1) and (2),

can be written in the form (1) if one cares to consider external

division as represented by a negative ratio, ml/m2, where, then,

one of the numbers m1? ra2 is positive, the other, negative.

EXERCISES

1. Find the coordinates of the point on the line-segment

joining (— 1, 2) with (5, — 4) which is twice as far from the

first point as from the second. Draw the figure accurately

and verify.

2. Find the point on the line through the points given in

the preceding problem, which is outside of the line-segment

bounded by them and is twice as far from the first point as

from the second.

3. Find the point which divides internally the line-segment

bounded by the points (3, 8) and (— 6, 2) in the ratio 1 : 5, and

lies nearer the first of these points.

4. The same question for external division.

7. Curve Plotting. Equation of a Curve. Since the subject

of graphs is now very generally taught in the school course

in Algebra, most students will already have met some of the

topics taken up on the foregoing pages, and moreover they

will have plotted numerous simple curves on squared paper

from given equations. Thus, in particular, they will be famil-

iar with the fact that all the points whose coordinates satisfy

a linear equation, i.e. an equation of the first degree, like

(1) 2a>-3y-l = 0,



COORDINATES. CURVES AND EQUATIONS 19

lie on a straight line, though they may never have seen a

formal proof.

A number of points, whose coordinates satisfy equation (1),

can be determined by giving to x simple values, computing

the corresponding values of y from (1), and then plotting the

points (x, y). Thus

if x = 0, y — — i, and the point is (0, — £) ,

if x = 1, y = -§-, and the point is (1, -J)

;

if x = 2, y = 1, and the point is (2, 1) ;

if it* = — 1, y = — 1, and the point is (— 1, — 1);

etc.

Of course, if it is known that (1) represents a straight line,

— i.e. that all the points whose

coordinates satisfy (1) lie on a

straight line,— it is sufficient

to determine two points as above,

and then to draw the line

through them.

This process of determining a

large number of points whose

coordinates satisfy a given equa-

tion and then passing a smooth

curve through them is known as " plotting a curve * from its

equation."

The mathematical curved defined by an equation in x and

y consists of all those points and only those points whose co'ordi-

nateSy when substituted for x and y in the equation, satisfy it.

Suppose, for example, that the equation is

(2) y = x\

The point (2, 4) lies on the curve denned by (2), because, when

* In Analytic Geometry the term curve includes straight lines as well

as crooked curves.
•*• This curve is sometimes called the locus of the equation.

Fig. 9
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x is set equal to 2 and y is set equal to 4 in (2), the resulting

equation,

4 = 4,

is true. We say, equation (2) is satisfied by the coordinates of

the point (2, 4), or that the point (2, 4) lies on the curve (2)

On the other hand, the point (— 1, 2), for example, does not

lie on the curve defined by (2). For, if we set x — — 1 and

y = 2, equation (2) becomes

2 = 1.

This is not a true equation; i.e. equation (2) is not satisfied

by the coordinates of the point (— 1, 2), and so this point does

not lie on the curve (2).

Equation of a Curve. A curve may be determined by simple

geometric conditions ; as, for example, that all of its points

be at a distance of 2 units from the origin. This is a circle

with its center at the origin and having a radius of length 2.

It is easy to state analytically the condition which the coor-

dinates of any point (x, y) on the circle must satisfy. Since

by § 3 the distance of any point (x, y) from the origin is

Vz2 + 2/2,

the condition that (x, y) be a point of the curve is clearly this,

that

V^TF=2,
or that

(3) a^ + 2/
2 = 4.

Equation (3) is called the equation of the curve in question.

TJie equation of a curve is an equation in x and y which is

satisfied by the coordinates of every point of the curve, and by

the coordinates of no other point.

In this book we shall be engaged for the most part in find-

ing the equations which represent the simpler and more im-

portant curves, and in discovering and proving, from these

equations, properties of the curves.
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Nevertheless, the student should at the outset have clearly

in mind the fact that any equation between x and y, like

y = a?, y = logx, y=sinx,

represents a perfectly definite mathematical curve, which he

can plot on paper. Moreover, he is in a position to determine

whether, in the case of a chosen one of these curves, a given

point lies on it. He will find it desirable to plot afresh a few

simple curves, and to test his understanding of other matters

taken up in this paragraph by answering the questions in the

following exercises.

EXERCISES

1. What does each of the following equations represent?

Draw a graph in each case.

(a) x = 2; (c) x-y = 0; (e) 2 a? - 3y + 6 = 0;

(6) 2y + 3 = ; (d) 2x+ 5y = ; (/) 5x + Sy - 4 = 0.

Plot the following curves on squared paper.

2. y = x\

Take 2 cm. or 1 in. as the unit of length. Use a table of

squares.

3. y
2 = x.

Take the same unit as in question 2 and use a table of square

roots.

4. Show that, when one of the curves of Exs. 2 and 3 has

been plotted from the tables, the other can be plotted from

the first without the tables.

Work the corresponding exercises for the following curves.

5. y = x3 . 6. y = y/x. 7. y'2 = x2
. 8. y

z = x1
.

9. Plot the curve

y = \og10 x

from a table of logarithms for values of x from 1 to 10, taking

1 cm. as the unit.
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10. Which of the straight lines of Ex. 1 go through the

origin ?

11. Show that the curve

(a) y = sin x

goes through the origin.

Do the curves

(b) y = tan x, (c) y = cos x,

go through the origin ?

12. Do the following points lie on the curve

xy = l?

(a) (-1,-1); (b) (-1,1); (c) (f, f)

;

(*) (-*-*); W (h -2); (/) (0,1).

13. Find the equations of the following curves.

(a) The line parallel to the axis of x and 8 units above it.

(b) The line parallel to the axis of y and
1-f

units to the

left of it.

(c) The line bisecting the angle between the positive axis

of y and the negative axis of x.

(d) The circle, center in the origin, radius p.

(e) The circle, center in the point (1, 2), radius 3.

Arts. (x-l)*+(y-2y = 9.

8. Points of Intersection of Two Curves. Consider, for ex-

ample, the problem of finding the point of intersection of the

lines

L: 2x-3y = 4:,

L': 3a + 4?/ = -11.

Let (xx , 2/x) be the coordinates of this unknown point, Plm

Any point P, with the coordinates (x, y), which lies on L, has

its x and y satisfying the first of the above equations. Hence,

in particular, since P
x
lies on L, x

x
and yx

must satisfy that

equation, or

(1) 2a* -3* -4
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Similarly, a point P : (x, y), which lies on V, has its x and

y satisfying the second of the above equations. Hence, in

particular, since P, lies on V, x
v
and yx

must satisfy that equa-

tion, or

(2) 3^+4^ = -11.

Thus it appears that the two unknown quantities
}
x

x
and yu

satisfy the two simultaneous equations, (1) and (2). Hence

these equations are to be solved as simultaneous by the

methods of Algebra.

2^-3^ = 4, 4

3;r 1 + 4?/1
= -ll, 3

To do this, eliminate yx
by multiplying the first equation

through by 4, the second by 3, and then adding

:

17^ = — 17, or' x1 = — 1.

On substituting this value of a^ in either equation (1) or (2),

the value of y1 is found to be : yx
— — 2. Hence P

x
has the

coordinates (— 1, — 2).

The equations (1) and (2) are the same, except for the sub-

scripts, as the equations of the given lines, L and V. Hence

we may say : To find the coordinates of the point of intersection

of two lines given by their equations, solve the latter as simul-

taneous equations in the unknown quantities, x and y, by the

methods of Elementary Algebra.

The generalization to the case of any two curves given by

their equations is obvious. The equations are to be regarded

as simultaneous equations between the unknown quantities, x and

y, and solved as such.

The student should observe that the letters " x " and " y

"

have totally different meanings when they appear as the co-

ordinates of a variable point in the equation of a curve, and when
they represent unknown quantities in a pair of simultaneous

equations. In the first case, they are variables, and a pair of

values, (x, y), which satisfy equation L will not, in general,

satisfy V. In the second case, x and y are constants, the
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coordinates of a single point, or of several points ; but of

isolated and not variable points.

EXERCISES

Determine the points of intersection of the following curves.

Check your results by plotting the curves and reading off as

accurately as possible the coordinates of the points of

intersection.

1. The straight lines (a) and (d) of Ex. 1, § 7.

2. The straight lines (c) and (e) of Ex. 1, § 7.

3. The straight lines (e) and (/) of Ex. 1, § 7.

4 [ y
2= 4»,

\x + y=3. Ans. (1,2), (9, -6).

5 |^ + ^ = 13,
6<

\x* + f- = a\

\xy = 6. \ x + y = 0.

[a*+jj" = 25,
8

(y* + 6* = 0,

} 4 a;
2 + 36^ = 144. \2x + y = l.

\x* + tf = 2,

|^ = 1. Ans. (1,1), (-1,-1).

10. Show that the curves

y = \ogw x, x+ y = l,

intersect in the point (1, 0).

11. Show that the curves

#2 + 2/
2 = 25, 3x-±y=0,

intersect in the point (4, 3), and also in (—4, — 3).

EXERCISES ON CHAPTER I

1. Show that the points (2, 0), (0, 2), (1 + V3, 1 + V3) are

the vertices of an equilateral triangle.

2. Prove that the triangle with vertices in the points (1, 8),

(3, 2), (9, 4) is an isosceles right triangle.
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3. Show that the points (-1, 2), (4, 10), (2,3), and

( — 3, — 5) are the vertices of a parallelogram.

4. Given the points A, B, C with coordinates (—7, —2),
(_ i^i,

0), (5, 3). By proving that

AB + BC=AC,

show that the three points lie on a line.

5. Show that the three points of the previous problem lie

on a line by proving that AB and AC have the same slope.

6. Prove that the two points (5, 3) and (—10, — 6) lie on

a line with the origin.

7. Prove that the two points (xlf y{), (x2 , y2) lie on a line

with the origin when, and only when, their coordinates are

proportional

:

x1 :y1 = x2 : y2 .

8. Determine the point on the axis of x which is equidis-

tant from the two points (3, 4), (—2, 6).

9. If (3, 2) and (— 3, 2) are two vertices of an equilateral

triangle which contains within it the origin, what are the co-

ordinates of the third vertex ?

10. If (3, —1), (—4, —3), (1, 5) are three vertices of a

parallelogram and the fourth lies in the first quadrant, find

the coordinates of the fourth. Arts. (8, 7).

11. If P is the mid-point of the segment PiP2 , and P and

P1 have coordinates (8, 17), (—5, — 3) respectively, what are

the coordinates of P2 ?

12. If P divides the segment PXP2 in the ratio 2 : 1, and P1

and P have coordinates (3, 8) and (1, 12) respectively, deter-

mine the coordinates of P2 . Ans. (0, 14).

13. Find the ratio in which the point B of Ex. 4 divides

the segment AC of that exercise. Ans. 2 : 3.

14. A point with the abscissa 6 lies on the line joining the

two points (2, 5), (8, 2). Find its ordinate.
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Suggestion. Determine the ratio in which the point divides

the line-segment between the two given points.

15. Prove that the sum of the squares of the distances of

any point in the plane of a given rectangle to two opposite

vertices equals the sum of the squares of the distances from it

to the two other vertices.

Suggestion. Choose the axes of coordinates skillfully.

16. If D is the mid-point of the side BC of a triangle ABC,
prove that

AB* + AC' = 2 AD2 + 2 BB\

17. Show that the lines joining the mid-points of opposite

sides of a quadrilateral bisect each other.

18. Prove that the lines joining the mid-points of adjacent

sides of a quadrilateral form a parallelogram.

19. Prove that, if the diagonals of a parallelogram are equal,

the parallelogram is a rectangle.

20. If two medians of a triangle are equal, show that the

triangle is isosceles.



CHAPTER II

THE STRAIGHT LINE

1. Equation of Line through Two Points. Let Py : (xly yt)

and P2 : (#2> ft) be two given points, and let it be required to

find the equation of the line through

them.

The slope of the line, by Ch. I,

§ -t, is

ft — ft

X'o

Fig. 1

Let P, with the coordinates (a;, #),

be any point on the line other than Pv
the line is also given by

y-ft.

Then the slope of

Hence

(1)

xx

y-ft = ft-ft
a; — a*! #2

— #!

Conversely, if P : (x, y) is any point whose coordinates

satisfy equation (1), this equation then says that the slope of

the line PXP is the same as the slope of the line PXP2 and

hence that P lies on the line PiP2 .

A more desirable form of equation (1) is obtained by multi-

plying each side by (x — xl)/(y2
— yi). We then have

:

(i)
x - "-'l _ y
X2

ft

®1 2/2 - ft

Equation (I) is satisfied by the coordinates of those points and

only those points which lie on the line PiP2 . Consequently.

27
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by Ch. 1, § 7, (I) is the equation of the line through the two given

points.

Example 1. Find the equation of the line which passes

through the points (1, — 2) and (— 3, 4).

Here

^i = I? Vi — — ^ and x2 = — 3, y2 = 4=

By (I) the equation of the line is

s-l- y-(-2)
or

X -l_y + 2

_3_1 4-(-2)' -4 " 6

On clearing of fractions and reducing, the equation becomes

3x + 2y + l=:0.

Let the student show that, if (x1} yx) had been taken as

(—3, 4) and (x2 , y2) as (1, — 2), the same equation would have

resulted.

Example 2. Find the equation of the line passing through

the origin and the point (a, b).

Here, (xlf ^i)= (0, 0) and (x2 , y2)= (a, b), and (I) becomes

- = % or bx~ay = 0.
a b

Lines Parallel to the Axes. In deducing (I) we tacitly as-

sumed that

y-i
— Vi ¥= and x2 — xl ^ ;

for otherwise we could not have divided by these quan-

tities.

If y2
— yl = 0, the line is parallel to the axis of x. Its

equation is, then, obviously

(2) y = jfcJ

Similarly, if x2
— xl

— 0, the line is parallel to the axis of y
and has the equation

(3) x — xv

These two special cases are not included in the result em-
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bodied in equation (I). We see, however, that they are so

simple, that they can be dealt with directly.*

Example 3. Find the equation of the line passing through

the two points (—5, 1) and (—5, 8).

It is clear from the figure that this line is parallel to the

axis of y and 5 units distant from it to the

left. Accordingly, the abscissa of every point

on it is — 5 ; conversely, every point whose

abscissa is — 5 lies on it. Therefore, its equa-

tion is

(-5,8)

<-5,D

x = — 5, or x + 5 = 0. fig. 2

EXERCISES f

Draw the following lines and find their equations.

1. Through (1, 1) and (3, 4). Ans. Sx - 2y - 1 = 0.

2. Through (5, 3) and (- 8, 6).

3. Through (0, - 5) and (- 2, 0). Ans. 5x+2y + 10 = 0.

4. Through the origin and (—1, 2).

5. Through the origin and (— 2, — 3).

6. Through (2, - 3) and (- 4, - 3). Ans. y + 3 = Q.

* It is not difficult to replace (I) by an equation which holds in all

cases, — namely, the following :

(I') O2 - 2/1) (x - xi) = (x2 - x{) (y - yx) .

We prefer, however, the original form (I) . For (I) is more compact

and easier to remember, and the special cases not included in it are best

handled without a formula.

t In substituting numerical values for (Xi, y{) and (z2, 2/2) iu (I), the

student will do well to begin with a framework of the form

x- _y —

and then fill in each place in which X\ occurs ; next, each place in which

2/1 occurs ; and so on. When xx or yx is negative, substitute it first in

parentheses ; thus, if xx = — 3, begin by writing

x-(-S) = y-
-(-3) -
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7. Through (0, 8) and (0, - 56).

8. Through (5, 3) and parallel to the axis of y.

9. Through (5, 3) and parallel to the axis of x.

10. Through (a, b) and (6, a). Ans. x -\- y = a + b

11. Through (a, 0) and (0, b). ^ ® +1=1
a 6

2. One Point and the Slope Given. Let it be required to find

the equation of the line which passes through a given point

Pi : (xu 2/x) and has a given slope, X.

If P : (x, y) be any second point on the line, the slope of the

line will be, by Ch. I, § 4,

.V-ffi ,.

x— x
x

But the slope of the line is given as A.. Hence

x — %
or

(ii) y-yi = K®- xi)-

The student can now show, conversely, that any point, whose

coordinates (x, y) satisfy (II), lies on the given line. Hence

(II) is the equation of the line passing through the given point

and having the given slope.

Example. Find the equation of the line which goes through

the point (2, — 3) and makes an angle of 135° with the posi-

tive axis of x.

Here, X = — 1 and (xlt y1) = (2, — 3), and hence, by (II), the

equation of the line is

2, + 3 = -l(a>-2),

or x -f y + 1 = 0.

Slope-Intercept Form of Equation. It is frequently conven-

ient to determine a line by its slope X, and the ^-coordinate

of the point in which it cuts the axis of ?/.
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Here, Xi = ; and, if we denote yx by the letter b, (II) be=

comes

(III) y = \x + b.

This is known as the slope-intercept form of the equation

of a straight line ; b is known as y

the intercept of the line on the axis

of y-

Example. Find the equation of the

line which makes an angle of 60° with

the axis of x and whose intercept on the
w

FlQ 3

axis of y is — 2.

Since \ =V3 and b = — 2, the equation is

y = V3a;-2.

EXERCISES

Draw the following lines and find their equations,

1. Through (— 4, 5) and with slope — 2.

Ans. 2# + y + 3 = 0.

2. Through (3, 0) and with slope f.

3. Through
(f,

— +) and with slope — -§.

4. Through the origin and making an angle of 60° with the

axis of x.

5. Through (— 4, 0) and making an angle of 45° with the

axis of y.

6. With intercept 1 on the axis of y and with slope — f.

Ans. 3x + 2y-2 = 0.

7. With intercept \ on the axis of y and making an angle

of 30° with the axis of x.

8. With slope — 1 and intercept — c on the axis of y.

9. With slope a/b and intercept 6 on the axis of y.

Ans. ax—by + 62=0.

3. The General Equation of the First Degree. Let there be

given an arbitrary line of the plane. If the line is parallel
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to neither axis, its equation is of the form (T), § 1,— an equa-

tion of the first degree in x and y. If the line is parallel to

the axis of x, its equation is of the form y = yi,— a special

equation of the first degree in x and y, in which it happens

that the term in x is lacking. Similarly, if the line is parallel

to the axis of y, its equation is of the form x = xl9
— an equa-

tion of the first degree which lacks the term in y. Conse-

quently, we can say : The equation of every straight line is of the

first degree in x andy.

Given, conversely, the general equation of the first degree in

x and yy
namely

(1) Ax + By+C = 0,

where A, B, C are any three constants, of which A and B are

not both zero ;
* this equation represents always a straight line.

The Case B=£0. In general, B will not be zero and we
can divide equation (1) through by it

:

and then solve for y : An
y B B

But this equation is precisely of the form (III), § 2, where

B' B
Therefore, it represents a straight line whose slope is — A/B
and whose intercept on the axis of y is — C/B.

The Case B = 0. If, however, B is zero, the equation (1)

becomes . „ _Ax+C=0.
Now, A cannot be zero, since the case that both A and B are

zero was excluded at the outset. We can, therefore, divide by

A and then solve for x :

„_
A

-

* In dealing with equation (1), now and henceforth, we shall always

assume that A and B are not both zero.
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This is the equation of a straight line parallel to the axis

of y, if C =£ 0. If C — 0, it is the equation of this axis.

This completes the proof that every equation of the first

degree represents a straight line. In accordance with this

property, such an equation is frequently called

a linear equation.

Example. What line is represented by the

equation

6x + 3y + l = 0?

If we solve for y, we obtain

y = -2x

1\

.V

XX
1 \ <o>-i>

Fig. 4

Hence the equation represents the line of slope

— 2 with intercept — \ on the axis of y. From these data we
may draw the line.

EXERCISES

Find the slopes and the intercepts on the axis of y of the

lines represented by the following equations. Draw the lines.

1. 4z -|-2?/ -1 = 0. 4. 2x-y = l.

2. 7«-f 8^+ 5 = 0. 5. y = 0.

3. 2x — oy = Q. 6. x = 3 — y.

Find the slopes of each of the following lines.

7. —x + 2y = 7. Ans. i 11. 2y — 3 = 0.

8. x— y+ 1. 12. 2x = Sy.

9. 3 — 2x = oy. 13. x= 5y + l.

10. 2x— 3i/ = 4. 14. foe + ay = a&.

4. Intercepts. In the preceding paragraph we learned to

plot the line represented by a given equation, from the values

of its slope and its intercept on the axis of y, as found from

the equation. It is often simpler, however, in the case of a

line which cuts the axes in two distinct points, to determine

from the equation the coordinates of these two points and then

to plot the points and draw the line through them.
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The point of intersection of a line, for example,

(1) 2x- Sy + 4 = 0,

with the axis of x has its y-coordinate equal to 0. Conse-

quently, to find the ^--coordinate of the point, we have but to

set y = in the equation of the line and solve for x. In this

case we have, then,

2a + 4 = 0, or

tL°k-

Similarly, the ^-coordinate of the point of intersection of

the line with the axis of y is 0, and its ^/-coordinate is obtained

by setting x = in the equation of the line and solving for y.

In the present case this gives

- Sy +4 = 0, or y = f
•

The points of intersection of the line (1) with the axes of

coordinates are, then, (—2, 0) and (0, -J).
We now plot these

points and draw the line through them.

fo^A) We recognize the number | as the

intercept of the line (1) on the axis of y ;

*-« the number — 2 we call the intercept on

the axis of x. We have plotted the line

(1), then, by finding its intercepts.

In general, the intercept of a line on the axis of x is the

.f-coordinate of the point in which the line meets that axis. The

intercept on the axis of y is similarly defined. These defini-

tions admit of extension to any curve. Thus, the circle of Ch. I,

§ 7, has two intercepts on the axis of x, namely, + 2 and — 2.

An axis or a line parallel to an axis has no intercept on that

axis. Every other line has definite intercepts on both axes,

and these intercepts determine the position of the line unless

they are both zero, that is, unless the line goes through the

origin.

EXERCISES

Determine the intercepts of the following lines on each of

the coordinate axes, so far as such intercepts exist, and draw

the lines.
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1. 2x + 3y- 6 = 0. 6. 2x + 3 = 0.

Ans. 3, 2. Ans. — 1£, none.

2. a — y + 1 = 0. 7. 8 — 5y = 0.

3. 3a -5?/ + 10 = 0. 8. .r=0.

4. 5« 4- 7# -h 13 = 0. 9. x 4- y = a.

5. 2a — 3?/ = 0. 10. 2«a — 3by = ab.

5. The Intercept Form of the Equation of a Line. Given a

line whose position is determined by its intercepts. Let the

intercept on the axis of x be a, and let that on the axis of y be

b. To find the equation of the line in terms of a and b.

Since one point on this line is (a, 0) and a second is (0, 6),

we have, by (I), § 1,

x—

a

_ y —
0-a~b-0'

or

(IV) -+!=*•

Only lines which intersect the axes in two points that are

distinct can have their equations written in this form. A line

through the origin is an exception, because one or both its

intercepts are zero and division by zero is impossible. Also a

line parallel to an axis is an exception, since it has no inter-

cept on that axis.

EXERCISES

Find the equations of the following lines.

1. "With intercepts 5 and 3.

2. "With intercepts —
2-J and 8.

3. With intercepts f and —
-f.

4. The diagonals of a square lie along the coordinate axes,

and their length is 2 units. Find the equations of the four

sides (produced).

An*, x 4- y = 1 ; aj— y = 1 ; — as 4- y = 1 ; — x — y = 1.
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5. A triangle has its vertices at the points (0, 1), (— 2, 0),

(1, 0). Draw the triangle and find the equations of its sides

(produced). Use formula (IV), when possible.

6. A triangle has its vertices at the points (a, 0), (b, 0),

(0, c). Find the equations of the sides (produced).

7. A line goes through the origin and the mid-point of that

side of the triangle of Ex. 5 which lies in the first quadrant.

Find its equation.

8. Find the equations of the lines through the origin and

the respective mid-points of the sides of the triangle of Ex. 6.

6. Parallel and Perpendicular Lines. Parallels. Given two

lines oblique to the axis of yy
so that both have slopes. The

lines are parallel if, and only if, they have equal slopes. For,

if they are parallel, their slope angles, and hence their slopes,

are equal ; and conversely.

Example 1. To find the equation of the line through the

point (1, 2) parallel to the line

(1) 3x-2y + 6=0.

The slope of the line (1) is
J-

. The required line has the

same slope and passes through the point (1, 2). By (II), § 2,

its equation is

2,-2^1(^-1),
or

3x-2y + 1 = 0.

If the given line is parallel to the axis of y, it has no slope and

hence the method of Example 1 is inapplicable. But then the

required line must also be parallel to the axis of y and its

equation can be written down directly. For example, if the

given line is 3 a? -f 8 = 0, and there is required the line parallel

to it passing through the point (—8, 2), it is clear that the

required line is parallel to the axis of y and 8 units to the left

of it, and consequently has the equation x — — 8, or x -f- 8 = 0.

Perpendiculars. Given two lines oblique to the axes, so that

both have slopes, neither of which is zero. The lines are per-
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pendicular if, and only if, their slopes, kx and a2 , are negative

reciprocals of one another :

(2) a2 = - f , or Xi = —f, Xi ^= 0, A2 =£ 0.

Ai A2

For, if the lines are perpendicular, one of their slope angles,

#! and 2 , may be taken as 90° greater than the other, viz.

:

2
=

X + 90°,

and hence

Ao = tan 2 = tan (61 + 90°)= - cot X
= — = -i,

tan 6X Ai

or

Conversely, if this last equation is valid, the steps can be

retraced and the lines shown to be perpendicular to each

other.

Example 2. To find the equation of the line through the

point (1, 2) perpendicular to the line (1).

The slope of (1) is f. Hence the required line has the slope

— -|. We have, then, to find the equation of the line through

the point (1, 2) with slope —
f. By (II), § 2, this equation is

2
,_2 = -|(!B -l),

or

2^ + 3?/- 8 = 0.

If the given line is parallel to an axis, it has no slope or its

slope is zero. In either case, equation (2) and the method of

Example 2 are inapplicable. But then the required line must

be parallel to the other axis and it is easy to write its equation.

Suppose, for example, that the given line is 2y — 3 = 0,— a

line parallel to the axis of x,— and that the required line per-

pendicular to it is to go through the point (3, 5). Then this

line must be parallel to the axis of y and at a distance of

3 units to the right of it. Consequently, its equation is

x -3 = 0.

The methods of this paragraph are applicable to all problems
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in which it is required to find the equation of a line which

passes through a given point and is parallel, or perpendicular,

to a given line.

EXERCISES

In each of the following exercises find the equations of the

lines through the given point parallel and perpendicular to

the given line.

Line Point

1. 4a-8y = 5, (-1, -3).

Arts, x — 2^ — 5 = 0; 2x + y + 5 = 0.

2. x-y = l, (0,0).

3. 5x + 13^-3 = 0, (2, -1).

4. 3x + 5y =0, (5,0).

5. 2x = 3, (5, -6).

6. V22/ + 7r = 0, (-2,0). Ans. y = 0; a; + 2 = 0.

7. l-a; = 0, (0, tt).

8. Find the equations of the altitudes of the triangle of

§ 5, Ex. 5.

9. Find the equations of the perpendicular bisectors of the

sides of the triangle of § 5, Ex. 5.

10. Show that the equation of the line through the point

(
xi> Vi) parallel to the line

(3) Ax + By = C
is Ax + By — Ax1 + Byx .

11. Show that the equation of the line through the point

(
xi> Vi) perpendicular to the line (3) of Ex. 10 is

Bx — Ay — Bxx
— Ayv

7. Angle between Two Lines. Let Lx and L2 be two given

lines, whose slopes are, respectively,

Ai = tan l9 and k2 = tan $2.

To tind the angle,
<f>, from Li to L2 .
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Since

<ft = 2
— $ly

it follows from Trigonometry that

. . tan 62
— tan 0,

tan
<f>
= s i-

,

1 + tan 6i tan 2

and hence that

(i) tan
<f>
= A2 — Aj

Fig. 6

That is, it is the

1 + Ai*2

The angle
(f>

is the angle from L\ to L2 .

angle through which Lx must be rotated in the positive sense,

about the point A, in order that it coincide with L2 . In par-

ticular, we agree to take it as the smallest such angle, always

less, then, than 180° : < <j> < 180°.*

If Lx
and L2 are perpendicular, then, by (2), § 6, A2 = — 1/Ax

and 1 -f- Ar\ 2 = 0. Consequently, cot <£, which is equal to the

reciprocal of the right-hand side of (1), has the value zero, and

so $ = 90°.

Example. Let Lx and L2 be given by the equations,

A: 4a; — 2y -f- 7 = 0,

L2 : l2x + 4:y-5 = 0.

Here Xx = 2 and A2 = — 3, and (1) becomes

3-2
tan<£ = = 1.1-6

Hence the angle <j> from Li to L2 is 45°.

In deducing (1) it was assumed that Lx
and

L2 both have slopes. If this is not the case,

at least one of the lines is parallel to the axis

of y and no formula is needed. The angle

<f>
may be found directly. Suppose, for ex-

ample, that Li and L2 are, respectively,

x + 2 = and x — y = 1.

* The figure shows L\ and Z2 as intersecting lines, but formula (1) and
the deduction of it are valid also in case L\ and L2 are parallel. In this

Fig. 7
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Then Lx
is parallel to the axis of y, and L2 is inclined at an

angle of 45° to the positive axis of x, since A2
= 1. Conse-

quently, <£ = 135°.

EXERCISES

In each of the following exercises determine whether the

given lines are mutually parallel or perpendicular, and in case

they are neither, find the angle from the first line to the second.

1. x + 2y = 3, x + 2y = 4.

2. 2#-?/ + 5 = 0, 4a> — 2^-7 = 0.

3. x — y = 1, x + y = 2.

4. x + 2y + ll = 0, 6a; -3^-4 = 0.

5c 3a — ?/ = 0, 2a; + ?/ = 0.

6= a; + 2y + 1 = 0, 2a; + y-l = 0.

7. 4a? + 3?/ = 3, 9x — 3y = 5.

8. 2a; — 3y = l, a? — 3 = 0.

9. x + y = 0, 2/ = 0.

10. 2a?-3?/ + l = 0, Sx-4,y-l = 0.

11. By the method of this paragraph determine each of the

three angles of the triangle whose sides have the equations

aj-2y-6 = 0, 2a; + y -4 = 0, 3x-y + 3 = 0.

Check your results by addiug the angles.

12. Prove that if Lx and L2 are represented by the equations

Lx

:

A& + B
Ly + Cx

= 0,

L2 : ^ + A?/ + C2 = 0,

then tan ^> = ^Bs
- A2B X

AXA2 + JBiBa

What can you say of Lx and L2 if A^2 — A2B X
= ? If

A^2 + ^A = 0?

case, we take the angle from L\ to L2 as 0° — , not as 180°, as is conceiv-

able. Hence arises the sign < (less than or equal to) in the place in

which it stands in the double inequality.
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13. Show that the formula of Ex. 12 for tan <j> is valid even

if one or both of the lines has no slope, i.e. is parallel to the

axis of y.

8. Distance of a Point from a Line. Let P:(xly tfa) be a

given point and let

L : Ax + By+C =

be a given line. To find the dis-

tance, D, of P from L.

Drop a perpendicular from P
on the axis of x, and denote the

point in which it cuts L by Q.

The abscissa of Q is a^. Denote

its ordinate by yq
. Then

Since Q : (xh y^) lies on L, its coordinates satisfy the equation

of L ;
thus

Ax1 + ByQ +C=0.

Solving this equation for yQ, we find

:

Axt_+ C

Fig. 8

y«

Hence

(1) QP

B

Axx + Byx + C
B

Let 6 be the slope-angle of L and form the product QPcos0.

One or both of the factors of this product may be negative,

according to the positions of P and L* But always the

numerical value of the product is equal to the distance D :

(2) Z)=|QPcos0|.

This is clear in case P and L are situated as in Fig. 8

;

* There are four essentially different positions for P and X, for L may
have a positive or a negative slope, and P may lie on the one or on the

other side of L.



42 ANALYTIC GEOMETRY

the student should draw the other typical figures and show

that for them, also, (2) is valid.

Since the slope of L is

X=rtan0=^-—

,

we have
A> + B*

sec2 = 1 -f- tan • 6 =
B*

Consequently,

(3) cosfl = :j-—-
B

V^l2 + B2

It is immaterial to us which sign in (3) is the proper one.

For, according to (2), we have now to multiply together the

values of QP and cos 6, as given by (1) and (3), and take the

numerical value of the product. The result is the desired

formula

:

n m
\Axi + Byx +C\

VA' + B*

or

,
Axi + Byi + C

(4)

D = ±-
V^l2 4- -S2

where, in the second formula, that sign is to be chosen which

makes the right-hand side positive.

Example. The distance of the point (3, — 2) from the line

?>x + ky- 7 =
is

j9=r l3-3 + 4(-2)-7l = 14.

V3 2 + 42 V25 5

The deduction of formula (4) involves division by B and

hence tacitly assumes that B=^0, i.e. that L is not parallel to

the axis of y. The formula holds, however, even when L is

parallel to the axis of y. For, in this case it is clear from a

figure that

D=K+^
and (4) reduces precisely to this when B = 0.
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Ans. 2f.

Ans. 2V10, or 6.32.

EXERCISES

In each of the first seven exercises find the distance of the

given point from the given line.

Point Line

1. (5,2), 3s-4?/ + 6 = 0.

2. (2,3), 5a; + 12y 4- 2 = 0.

3. (6, -1), 3a?-2/ + l = 0.

4. (3,4), 3a + 5 = 0.

5. (-2,-5), 2/
= 0.

6. Origin, x + y — 1 = 0.

7. Origin, Sx + 2y - 6 = 0.

8. Find the lengths of the altitudes of the triangle with

vertices in the points (2, 0), (3, 5), (—1, 2).

9. Area of a Triangle. Let a triangle be given by means of

its vertices (x1} yx), (x2, y2), (a?3 , y3).

To find its area.

Drop a perpendicular from one

of the vertices, as (x3 , y3), on the

opposite side. Then the required

area is

where D denotes the length of

the perpendicular and E, the length of the side in question.

By Ch. I, § 3, we have

<*t,y,)

<*i^i)

Fig. 9

E = -V(x2 -xly+(y2 -yiy.

D is the distance of (x3 , y3) from the line joining (x1} y{)

and (#2, y2)
. The equation of this line, as given by (I) or (I'),

§ 1, may be put into the form

:

(2/2 — 2/i)» - (
x2 — V\)y — »i2/2 + *Wi = 0.

Consequently, by (4), § 8, we find

:

D _ ± (2/2~ 2/1)3.3- (S2 - Si>73 ~ 3q,y2 + *Wl .

V(x2 -x1y+(y2 -y1y
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Thus
A = ±±[(ij2

- 2/i)x3 - (x2 - xi)ys - xxy2 + x2yQ.

The result may be written more symmetrically in either of

the forms

(1) A = ± §-[(<*?! - x2)y3 + (x2 - a?3)2/i + (
xs ~ ®i)##l

or

(2) A = ± |[(2/!- 2/2)<b3 + (2/2
- 2/3)^ 4- (2/3

- 2/i)^]j

where in each case that sign is to be chosen which makes the

right-hand side positive.

EXERCISES

Find the area of the triangle whose vertices are in the

points

1. (1,2), (-1,2), (-2,1).

2. (5,3), (-3,4), (-2,-1).

3. (1, 2), (2, 1), (0, 0).

Find the area of the triangle whose sides lie along the lines

4. x — y = 0, x + y = 0, 2x + y-3 = 0.

5. 2x + y~r6 = 0, x-y + 3 = 0, x-2y-8 = 0.

6. Find the area of the convex quadrilateral whose vertices

are in the points (4, 2), (- 1, 4), (- 3, - 2), (5, - 8).

7. What do formulas (1) and (2) become when one of the

vertices, say (x3 , yz), is in the origin ?

Ans. A — ± ^(xxy2
— x2yY).

10. General Theory of Parallels and Perpendiculars. Iden-

tical Lines.* The line through the point (a?i, yx)
parallel to

the line

(1) Ax + By = C,

has the equation, according to § 6, Ex. 10,

Ax + By = Axx + Byx .

* The discussion in the class-room of the subjects treated in this and the

following paragraph may well be postponed until the need for them arises.
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This equation is of the form

(2) Ax+ By=C,
since the constant Ax± + Byx may be denoted by the single

letter C
Conversely, equations (1) and (2), for C =£ 0, always repre-

sent parallel lines. For, if B=^0, the lines have the same

slope, — A B ; if B = 0. A cannot be zero, and the lines are

parallel to the axis of y and hence to each other.

Theorem 1. Tico lines are paraMel when and only when their

equations can be written in the forms (1) and (2), inhere C =£ C.

The line through the point (x1: y^, perpendicular to the

line (1), has the equation (§ 6, Ex. 11)

:

Bx — Ay = Bx\ — Aylt

and this equation is of the form

(3) Bx-Ay=&.
Let the student show, conversely, that equations (1) and (3)

always represent perpendicular lines.

Theorem 2. Two lines are perpendicular when and only

when their equations can be written in the forms (1) and (3).

The equations of two parallel lines can always be written

in the forms (1) and (2). But they need not be so written.

Thus the lines,

2x-y=-l,
6x-3y = 2,

are parallel, though the equations are not in the forms (1) and

(2). The coefficients of the terms in x and y are not respec-

tively equal. They are, however, proportional : 2 : 6= — 1 : — 3.

This condition holds in all cases. For the two lines

W- A^ + B^ + C^O,
L2 : A& -f- B2y + C2 = 0,

we mav state the theorem

:
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Theorem 3. TJie lines Lx and L2 are parallel * if and only if

A 1 :A2 = B1
: B2 .

For, Lx and L2 are parallel if and only if the angle
<f>

be-

tween them, as defined in § 7, is zero ; bnt, according to § 7,

Ex. 12, cj>, or better, tan <£, is zero, when and only when
AXB2

— A2BX
= 0. But this equation is equivalent to the pro-

portion Ax : A2 = Bx : B2 .

As a second consequence of § 7, Ex. 12, we obtain the fol-

lowing theorem.

Theorem 4. The lines Lx and L2 are perpendicular if and
only if

Identical Lines. Two equations do not have to be identically

the same in order to represent the same line. For example,

the equations,

2a-y + l = 0,

6a;- 3^ + 3 = 0,

represent the same line. The corresponding constants in

them are not equal, but they are proportional. We have,

namely,
2:6 = -1: -3 = 1:3,

or, what amounts to the same thing,

2:-l:l=6: -3:3.

This condition is general. We formulate it as a theorem :

Theorem 5. The lilies Li and L2 are identical if and only if

A\ > A2= -Z>i : B2 = Ci : C2l

or Al .B1 :Cl = A2 .B2 : C2 .

For, Ly and L2 are the same line when and only when they

have the same slope and the same intercept on the axis of y,

that is, when and only when

_^i = _4? and _5i= _^,
Bi B2 Bi B2

* Or, in a single case, identical. Of . Th. 5.
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or Ai:A2=Bi:B2 and Bl :B2=Ci'.C2 ,

or, finally, A x : A2 = Bx : B2 = Ci : 2 .

This proof assumes that i^ =£ and i?2 ^ 0. The proof,

when this is not the case, is left to the student.

EXERCISES

1. Prove Th. 3 directly, without recourse to the results

of §7.

2. The same for Th. 4.

See also Exs. 15, 16, 17, 18 at the end of the chapter.

11. Second Method of Finding Parallels and Perpendiculars.

Problem 1. To find the equation of a line parallel to the

given line

(1) Ax +By=Cy

and satisfying a further condition.

By § 10, Th. 1, the desired equation can be written in the

form _

(2) Ax + By=C,
where C" is to be determined by the further condition.

Example. Consider the first example treated in § 6. In

this case the equation of the desired line can be written in the

form
3x-2y = k,

where we have replaced the Q' of (2) by k. The "further

condition," by means of which the value of k is to be deter-

mined, is that the line go through the point (1, 2). Hence
x = 1, y = 2 must satisfy the equation of the line, or

3.1-22 = *.

Consequently, k = — 1, and the equation of the line is

3x-2y + l = 0.

Problem 2. To find the equation of a line perpendicular to

the given line (1) and satisfying a further condition.
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By § 10, Th. 2, the desired equation can be written in the

form

(3) Bx-Ay = C",

where C is to be determined by applying the further condition.

This condition does not always have to be that the line

should go through a given point. It may be any single con-

dition, not affecting the slope of the line, which it seems de-

sirable to apply. We give an example illustrating the method
in such a case.

Example. To find the equation of the line perpendicular to

2x-y-± = Q

and cutting from the first quadrant a triangle whose area is 16.

Equation (3) may, in this case, be written as

(4) x + 2y = k.

We are to determine k so that the line (4) cuts from the first

quadrant a triangle of area 16. The intercepts of the line (4)

are k and ^k, and hence the area of the triangle in question is

Ik2
. Accordingly, \k2 = 16, and k = ± 8. But the line cuts

the first quadrant only if k is positive, and so we must have

7; = 8. The equation of the desired line is, then,

x + 2y-8 = 0.

EXERCISES

1. Work Exs. 1-4, 8, 9 of § 6 by this method.

2. There are two lines parallel to the line

x — 2y = 6

and forming with the coordinate axes triangles of area 9.

Find their equations.

3. Find the equations of the lines parallel to the line of

Ex. 2 and 3 units distant from it.

Suggestion. Write the equation of the required line in the

form (2) and demand that the distance from it of a chosen

point of the given line be 3.



THE STRAIGHT LINE 49

4. Find the equations of the lines parallel to the line

5 X + 122/-3 =

and 2 units distant from the origin.

5. The same as Ex. 2, if the lines are to be perpendicular,

instead of parallel, to the given line.

6. The same as Ex. 4, if the lines are to be perpendicular,

instead of parallel, to the given line.

7. A line is parallel to the line 3x-{- 2y — 6=0, and forms

a triangle in the first quadrant with the lines,

x — 2 y = and 2 x — y = 0,

whose area is 21. Find the equation of the line.

Ans. 3a + 2?/- 28=0.

EXERCISES ON CHAPTER II

1. Find the equation of the line whose intercepts are twice

those of the line 2x — 3y — 6 = 0.

2. Find the equation of the line having the same intercept

on the axis of x as the line V3# — y — 3 = 0, but making with

that axis half the angle.

3. Find the equation of the line joining the point (3, — 2)

with that point of the line 2x — y = 8 whose ordinate is 2.

4. A perpendicular from the origin meets a line in the point

(5, 2). What is the equation of the line ?

5. The coordinates of the foot of the perpendicular dropped

from the origin on a line are (a, b). Show that the equation

of the line is

ax + by = a2 + b2
.

6. The line through the point (5, — 3) perpendicular to a

given line meets it in the point (—3, 2). Find the equation

of the given line.

7. Prove that the line with intercepts 6 and 3 is perpen-

dicular to the line with intercepts 3 and — 6. Is it also per-

pendicular to the line with intercepts — 3 and 6 ?
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8. Prove that the line with intercepts a and b is perpen-

dicular to the line with, intercepts b and — a.

9. Show that the two points (5, 2) and (6, — 15) subtend a

right angle at the origin.

10. Prove that the two points, (xh yx) and (x2, y2), subtend a

right angle at the origin when, and only when, xlx2
-+- yxy2 = 0.

11. Do the points (6, —1) and (—3,4) subtend a right

angle at the point (4, 6) ? At the point (- 4, - 2) ?

12. Given the triangle whose sides lie along the lines,

% — 2y + 6 = 0, 2x-y = S, x + y - 3 = 0.

Find the coordinates of the vertices and the equations of the

lines through the vertices parallel to the opposite sides.

13. Two sides of a parallelogram lie along the lines,

2x + 3y-6 = 0, ±x-y = L

A vertex is at the point (—2, 1). Find the equations of the

other two sides (produced).

14. One side of a rectangle lies along the line,

5x + 4?/- 9 = 0.

A vertex on this side is at the point (1, 1) and a second vertex

is at (2, —1). Find the equations of the other three sides

(produced).

15. For what value of A will the two lines,

3a-22/ + 6 = 0, Atf-2/ + 2 = 0,

(a) be parallel ? (b) be perpendicular ?

16. For what value, or values, of m will the two lines,

4cc — my + 6 = 0, x + my -f- 3 = 0,

(a) be parallel ? (£) be perpendicular ?

17. For what value of m will the two equations,

mx + y -f- 5 = 0, 4cc + my + 10 = 0,

represent the same line ?
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18. For what pairs of values for k and I will the two

equations,

12 x + ky + I = 0, Ix - 5y + 3 = 0,

represent the same line ?

19. The equations of the sides of a convex quadrilateral are

x = 2, y = 4, y = x, 2y = x.

Find the coordinates of the vertices and the equations of the

diagonals.

20. Find the equation of the line through the point of

intersection of the lines,

- 3a; -5?/ -11 = 0, 2x -7y = ll,

and having the intercept — 5 on the axis of y.

21. Find the equation of the line through the point of in-

tersection of the lines,

2x + 5y = 4, Sx - ±y + 17 = 0,

and perpendicular to the first of these two lines.

22. Find the distance between the two parallel lines,

Sx - ±y + 1 = 0, 6x - Sy + 9 = 0.

Suggestion. Find the distance of a chosen point of the first

line from the second.

23. Let

Ax + By+ (7=0 and Ax + By -f C =

be any two parallel lines. Show that the distance between

them is

1^ CL or ± C'~ C
.

24. There are two points on the axis of x which are at the

distance 4 from the line 2x — Sy — 4 = 0. What are their

coordinates ?

25. Find the coordinates of the point on the axis of y which

is equidistant from the two points (3, 8), (—2, 5).
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26. There are two lines through the point (1, 1), each

cutting from the first quadrant a triangle whose area is 2\.

Find their slopes. Arts. — i — 2.

27. Find the equation of the line through the point (3, 7)

such that this point bisects the portion of the line between

the axes. Ans. Ix + Sy — 42 = 0.

28. The origin lies on a certain line and is the mid-point of

that portion of the line intercepted between the two lines,

Sx — 5y = 6, 4:X + y + 6 = 0.

Find the equation of the line. Ans. x + 6y = 0.

29. The line

(1) 3a?-8y + 5 =

goes through the point (1, 1). Find the equation of the line

(2) through this same point, if the angle from the line (1) to

the line (2) is 45°. Ans. llx-5y-6 = 0.

30. Find the equations of the two lines through the origin

making with the line 2x — 3y = angles of 60°.



CHAPTER III

APPLICATIONS

1. Certain General Methods. Lines through a Point. In

many theorems and problems of Plane Geometry the question

is to show that three lines pass through a point. Plane Geom-

etry affords, however, no general method for dealing with this

question. Each new problem must be discussed as if it were

the first of this class to be considered.

Analytic Geometry, on the other hand, affords a universal

method, whereby in any given case the question can be settled.

For, from the data of the problem, the equation of each of the

lines can be found. These will all be linear, and can be writ-

ten in the form

Lx : Axx + Biy + d = 0,

L2 : A2x + B2y + C2 = 0,

L3 : A3x + B3y + C3 = 0-

The coordinates of the point of intersection of two of these

lines, as ix and L2 , can be found by solving the corresponding

equations, regarded as simultaneous, for the unknown quanti-

ties x and y. Let the solution be written as

x = x', y = y'.

The third line, L3} will pass through this point (a/, y'), if and

only if the coordinates of the latter satisfy the equation of L3 ;

i.e. if and only if

A3x' + B3
y' -f C3 = 0.

Points on a Line. A second question which presents itself

in problems of Plane Geometry is to determine when three

53
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points lie on a straight line. Here, again, the repty of Analytic

Geometry is methodical and universal. From the data of the

problem it will be possible in any given case to obtain the

coordinates of the three points. Call them

(x1} yi), (x2y y2 ), (x3 , ys).

Now, we know how to write down the equation of a line

through two of them, as (x± , y^ and (x2 , y2). This equation

will always be linear, and can be written in the form

Ax + By + C=0.

The third point, (x3 ,y3), will lie on this line if and only if its

coordinates satisfy the equation of the line; i.e. if and only if

Ax3 + By3 + C=0.

The student should test his understanding of the foregoing

theory by working Exs. 1-6 at the end of the chapter.

2. The Medians of a Triangle. We recall the proposition

from Plane Geometry, that the medians of a triangle meet in a

point. The proof there

given is simple, provided

one remembers the con-

struction lines it is desir-

able to draw. By means,

however, of Analytic Ge-

ometry we can establish

the proposition, not by

artifices, but by the natural

and direct application of

the general principle enun-

ciated in the preceding

paragraph.

The first step consists in

the choice of the coordinate axes. This choice is wholly in

our hands, and we make it in such a way as to simplify the

coordinates of the given points. Thus, clearly, it will be well

-B:(-l,3)

£:tt,0)



APPLICATIONS 55

to take one of the axes along a side of the triangle. Let this

be the axis of x.

A good choice for the axis of y will be one in which this

axis passes through a vertex. Let this be the vertex not on

the axis of x.

We begin with a numerical case, choosing the vertices A, _B,

G at the points indicated in the figure.

The Equations of the Medians. Consider the median AA'.

One point on this line is given, namely A : (— 2, 0). A second

point is the mid-point A' of the line-segment BC. By Ch. I,

§ 5, the coordinates of A' are (2, 3).

The student can now solve for himself the problem of finding

the equation of the line Lx through A : (— 2, 0) and A f

: (2, 3).

The answer is,

Lx \ 3x-±y + 6 = 0.

In a precisely similar way the coordinates of B' are found

to be (— 1, 3), and the equation of the median BB' is

L2 : 3a + 5y-12 = 0.

Finally, the coordinates of G are (1, 0), and the equation of

the median CG is

Lz : 6x -f- y — 6 = 0.

TJie Point of Intersection of the Medians. The next step con-

sists in finding the point in which two of the medians, as Lx

and L2 , intersect. The coordinates of this point will be given

by solving as simultaneous the equations of these lines

:

3z-4y + 6 = 0,

Sx + 5y - 12 = 0.

The solution is found to be

:

* = -£, 2/ = 2.

And now the third median, L3i will go through this point,

(f, 2), if the coordinates of the point satisfy the equation of L3}

6 a; -f- 2/
— 6 = 0.
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On substituting for x in this equation the value f and for y
the value 2, we are led to the equation

6.2+2-6 = 0.

This is a true equation, and hence the three lines Li} L2 , and

Lz pass through the same point.

Remark. It can be shown by the formulas of Ch. I, § 6,

that the above point (-§-, 2) trisects each of the medians AA\
BB\ and CO.

EXERCISES

1. Taking the same triangle as before, choose the axis of x

along the side AB, but take the axis of y through A. The

coordinates of the vertices will then be

:

A -.(0,0); B:(6,0);. 0:(2,6).

Prove the theorem for this triangle.

2. The vertices of a triangle lie at the points (0, 0), (3, 0),

(0, 9). Prove that the medians meet in a point.

3. Continuation. The General Case. We now proceed to

prove the theorem of the medians for any triangle, ABC. Let

A:(a,0) CH^fi) o

Fig. 2

^.•(5,0)

the axes be chosen as in the text of § 2. Then the coordinates

of A will be (a, 0), where a may be any number whatever,
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positive, negative, or zero. The coordinates of B will be (b, 0),

where b may be any number distinct from a :

b =£ a, or a — b^pO*

Finally, the coordinates of C can be written as (0, c), where c

is any positive number.

Xext, find the coordinates of A', B\ C They are as shown

in the figure.

The equation of Lx is given by Ch. II, (I), where

(x1,yl)= (a,0); O2, 2/2)=Q, |\

x —a y —
It is: I

=
c

"'
a - —

2 2

or

Lx : ex -f (2 a — &)# = ac.

The equation of L2 can be worked out in a similar manner.

But it is not necessary to repeat the steps, since interchanging

the letters a and b interchanges the points A and B, and also

A' and B'. Thus Lx passes over into L2 . Hence the equation

of L2 is :

L2 : ex + (26 — a)y = be.

The line i3 is determined by its intercepts, ±{a 4- b) and c

;

by Ch. II, (IV), its equation is found to be

:

L3 : 2 ex -f (a + &)?/ = (a + b)c.

To find the coordinates of the point in which Lx and L2 in-

tersect, solve as simultaneous the equation of Lx and L2 :

ex + (2 « — b)y = ac,

ex + (2 b — a)# = 6c.

The result is :

a + b c

* The figure has been drawn for the case in which a is negative and b

positive.
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Finally, to show that this point, (
a ~}~

, -\ lies on Ls , sub-
\ 3 3J

stitute its coordinates in the equation of L3 :

2c^ + (« + 6)|=(« + 6)c

Since this is a true equation, the point lies on the line, and we
have proved the theorem that the medians of a triangle pass

through a point.

That this point trisects each median can be proved as in the

special case of the preceding paragraph, by means of Ch. I, § 6.

The details are left to the student.

EXERCISE

Prove the theorem of the medians by taking the coordinate

axes as in the first exercise of the preceding paragraph. Here,

the vertices are

^:(0,0); 3:(o,0); 0:(b
9
e),

where a may be any number not 0, b any number whatever,

and c any positive number. Draw the figure, and write in the

coordinates of each point used.

4. The Altitudes of a Triangle. Another proposition of

Plane Geometry is, that the perpendiculars dropped from the

vertices of a triangle on the opposite sides meet in a point.

The proof of the proposition by Analytic Geometry is direct

and simple. Let us begin with a numerical case, taking the

triangle of Fig. 1. One of the perpendiculars is, then, the

axis of y, and so all that is necessary to show is that the other

two meet on this axis, or that the cc-coordinate of their point

of intersection is 0.

The equation of the line BC can be written down at once in

terms of its intercepts :

f+ f
= l, or 3x + 2y=12.

4 6
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The slope of this line is A = — f. The slope of any line

perpendicular to it is A' = §. Hence the equation of Ll9 the

perpendicular which passes through the point A : (— 2, 0), is

2/-0 = l(z + 2),

or

Lx : 2x - 3y + 4 = 0.

In a similar manner the student can obtain the equation of

the perpendicular L2 from B on the side AC. It is,

L2 : x + 3^—4= 0.

On computing the a>coordinate of the point in which 7^ and

L2 intersect, it is found that x = 0, and hence the proposition

is established for this triangle.

Remark. For use in a later problem it is necessary to

know the exact point in which the perpendiculars meet. It is

readily shown that this point is (0, -§).

EXERCISES

1. Prove the above proposition for the special triangle con-

sidered, choosing the coordinate axes as in Ex. 1 of § 2.

2. Prove the proposition for the triangle of Ex. 2, § 2.

3. Prove the proposition for the general case, choosing the

axes as in Pig. 2. First show that the equation of the perpen-

dicular Lx from A on BC is

L x
: bx — cy — ab,

and that the equation of the perpendicular L2 from B on AC is

L2 : ax — cy = ab.

Then show that these lines intersect each other on the axis

of y.

4. Show that the point in which the perpendiculars in the

preceding question meet is (0, V

5. Prove the theorem of the altitudes, when the axes of

coordinates are taken as in the exercise of § 3.
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5. The Perpendicular Bisectors of the Sides of a Triangle.

It is shown in Plane Geometry that these lines meet in a

point. Since the student is now in full possession of the

method employed in Analytic Geometry for the proof of this

theorem, he will find it altogether possible to work out that

proof without further suggestion. Let him begin with the

special triangle of Fig. 1. He will find that the equations of

the perpendicular bisectors of the sides are the following

:

L2 : x + 3y-$ = 0-,

L3 : x - 1 = 0.

These lines are then shown to meet in the point (1, J).

He can work further special examples corresponding to the

exercises at the end of § 2 if this seems desirable.

Finally, let him work out the proof for the general case, tak-

ing the coordinate axes as in Fig. 2. The three lines will be

found to have the equations

Lx : bx—cy = |(6
2 - c2),

L2 : ax — cy — \ (a
2 — c2),

L3 : x = |(a + b).

They meet in the point

(a + b ab + c
2N

EXERCISE

Give the proof when the axes of coordinates are taken as in

the exercise of § 3.

6. Three Points on a Line. The foregoing three propositions

about triangles have led to three points, namely, the three

points of intersection of the three lines in the various Cases.

In the case of the special triangle of Fig. 1, these points are

(|, 2) ; (0, 4) ; (1, I).
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These points lie on a straight line. Let the student try to

prove this theorem by Plane Geometry.

The proof by Analytic Geometry is given immediately as a

direct application of the second of the general principles enun-

ciated in the opening paragraph of the chapter.

Write down the equation of the line through two of these

points,— say, through the first and third. It is found to be

:

3a; -3y + 4 = 0.

The coordinates of the second point,

* = °> y = h
are seen to satisfy this equation, and the proposition is proved.

EXERCISES

1. Prove the proposition for the general case (Fig. 2). The
points have been found to be :

fa -\-b c\ /a q6\ fa + b ab + c

-

\

2. On plotting the three points obtained in the special case

discussed in the text it is observed that the line-segment de-

termined by the extreme points is divided by the intermedi-

ate point in the ratio of 1:2. Prove this analytically. Is it

true in general ?

EXERCISES ON CHAPTER III

1. Prove that the three lines,

2x-3y-5 = 0, Sx + 4y - 16 = 0, 4a - 23y + 7 = 0,

go through a point.

2. Prove that the three lines,

ax + by = 1, bx + ay = 1, x — y — 0,

go through a point.

3. Prove that the three points (4, 1), (—1, — 9), and

(2, — 3) lie on a line.
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4. Prove that the three points (a, 6), (6, a), and

(— a, 2a 4- b) lie on a line.

5. Find the condition that the three lines,

bx + ay = 2ab, ax + by = a2 + b2
, Sx — 2y = 0,

where a2 is not equal to b'
2
, meet in a point.

6. Find the condition that the three points (a, b), (b, a),

and (2 a, — b), where a is not equal to b, lie on a line.

Lines through a Point

7. Show that the line drawn through the mid-points of the

parallel sides of a trapezoid passes through the point of inter-

section of the non-parallel sides.

8. Show that, in a trapezoid, the diagonals and the line

drawn through the mid-points of the parallel sides meet in a

point.

9. A right triangle has its vertices A, B, and in the points

(4, 0), (0, 3), and (0, 0). The points A : (4, - 4) and B' : (- 3,

3) are marked. Prove that the lines AB', BA f

, and the per-

pendicular from on the hypothenuse meet in a point.

10. (Generalization of Ex. 9.) Given a right triangle ABO
with the right angle at O. On the perpendicular to OA in

the point A measure off the distance AA', equal to OA, in the

direction away from the hypothenuse. In a similar fashion

mark the point B' on the perpendicular to OB in B, so that

BB' = OB. Prove that the lines AB', BA', and the perpen-

dicular from O on the hypothenuse meet in a point.

11. Let P be any point (a, a) of the line x — y = 0, other

than the origin. Through P draw two lines, of arbitrary slopes

Ax and a2 , intersecting the #-axis in A1 and A2 and the ?/-axis

in Bi and B2 respectively. Prove that the lines A^ and

A2Bi will, in general, meet on the line x + y — 0.

12. If on the three sides of a triangle as diagonals paral-

lelograms, having their sides parallel to two given lines, are
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described, the other diagonals of the parallelograms meet in a

point.

Prove this theorem, when the given lines are the coordinate

axes, and the triangle has as its vertices the points (1, 6),

(4, 11), (9, 3).

13. Prove the theorem of the preceding exercise, when the

given lines are the axes, and the triangle has its vertices in the

points (0, 0), (a, a), (6, c).

Points on a Line

14. Show that in the parallelogram ABCD the vertex D,

the mid-point of the side AB, and a point of trisection of the

diagonal AC lie on a line.

15. Prove that the feet of the perpendiculars from the

point (2, — 1) on the sides of the triangle with vertices in the

points (0, 0), (3, 0), and (0, 1) lie on a line.

16. Prove that the feet of the perpendiculars from the point

(—1, 4) on the sides of the triangle with vertices in the points

(2, 0), (- 3, 0), and (0, 4) lie on a line,

17. Show that the feet of the perpendiculars from the point

( 0, —J on the sides of the triangle with vertices in the points

(a, 0), (b, 0), and (0, c) lie on a line.

18. Let M be the point of intersection of two opposite sides

of a quadrilateral, and N
t
the point of intersection of the other

two sides. The mid-point of MN and the mid-points of the

diagonals lie on a right line.

Prove this proposition for the special case that the vertices

of the quadrilateral are situated at the points (0, 0), (8, 0), (6, 4).

(1, 6).

19. Prove the proposition of Ex. 18 for the general case.

Suggestion. Take the axis of x through M and N, the

origin being at the mid-point. The equations of the sides can

then be written in the form
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y = X^x -h), y = X2(# - h),

y = X3 (oj + h)
y y = \i(x + ft).

20. Let be the foot of the altitude from the vertex O of

the triangle ABC on the side AB. Then the feet of the per-

pendiculars from on the sides BC and AC and on the other

two altitudes lie on a line.

Prove this theorem for the triangle ABC with vertices in

the points (1, 0), (- 4, 0), (0, 2).

21. Prove the theorem of the preceding exercise for the

triangle with vertices in the points * (a, 0), (6,0), (0, c). It

will be found that

ac 1 cCc \ / be2 Wc
2 + c2 ' tf + cy' V^ + c 2 ' 62 -j-c2/
cCb — abc \ ( ab2 — abc \

^Tc1 ' a' + c-f y>' + c"' 62 + c2/
are the coordinates of the four points which are to lie on a

line, and that

c(a 4- b)x + (ab — c l

)y == a&c

is the equation of the line.



CHAPTER IV

THE CIRCLE

1. Equation of the Circle. According to Ch. I, § 7, the

equation of the circle whose center is at the origin, and whose

radius is p, is

(i) <*+»-/*

In a precisely similar manner, the equation of a circle with

its center at an arbitrary point

C: (a, /?) of the plane, the length

of the radius being denoted by p, is

found to be :

(2) (x- ay + (y-py = P
->.

Example. Find the equation of

the circle whose center is at the Fig. l

point (—
-J, 0), and whose radius is f

.

Here, a = — f, (3 = 0, and p = f. Hence, from (2) :

(* + t)
2 + 2/

2 = f
This equation can be simplified as follows

:

*2 + f*+¥ + ^ = *>
or, finally,

3a2 + 3y2
-f 8a; + 4 = 0.

EXERCISES

Find the equations of the following circles, and reduce the

results to their simplest form. Draw the figure each time.

1. Center at (4, 6) ; radius, 3.

Ans. x2 + y
2 -8x- 12y + 43 = 0.

2. Center at (0, - 2) ; radius, 2. Arts, x2 + y
2 + 4 y = 0.

65
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3. Center at (— 3, 0) ; radius, 3.

4. Center at (2, — 4) ; radius, 8.

5. Center at (0, -|) ; radius,
-J.

6. Center at (3, — 4) ; radius, 5.

7. Center at (— 5, 12) ; radius, 13,

8. Center at (£, — J) ; radius, 2.

9. Center at (— f, f) ; radius, J^.

10. Center at (a, 0) ; radius, a.

11. Center at (0, a) ; radius, a.

12. Center at (a, a) : radius, «V2.

2. A Second Form of the Equation. Equation (2) of § 1 can

be expanded as follows :

xi + yi-2ax- 2/3y + a* -f- /?
2 - p

2 = 0.

This equation is of the form

(1) tfi + f- + Ax + By+C=0.
Let us see whether, conversely, equation (1) always repre-

sents a circle.

Example 1. Determine the curve represented by "he

equation

(2) a;
2 + 2/

2 + 2a - 6y + 6 == 0.

We can rewrite this equation as follows :

(a* + 2» ) + (^_62/ ) = -6.

The first parenthesis becomes a perfect square if 1 is added

;

the second, if 9 is added. To keep the equation true, these

numbers must be added also to the right-hand side. Thus

(rf+ 2» + l)+ foi-6y+-9)=-6 + l+.9,
or

(z + l) 2+0/-3)2 = 4.

This equation is precisely of the form (2), § 1, where

a =— 1, ft = 3, p s= 2. It therefore represents a circle whose
center is at (— 1, 3), and whose radius is 2.
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Example 2. What curve is represented by the equation

(3) ^ + ^ + 1 = 0?

It is clear that no point exists whose coordinates satisfy this

equation. For, x2 and y
1 can never be negative. Their least

values are 0,— namely, for the origin, (0, 0),— and even for

this point, the left-hand side of the equation has the value -f 1.

Hence, there is no curve corresponding to equation (3).

Example 3. Discuss the equation

(4) x1
-f f- + 2x - ±y + 5 = 0.

Evidently, this equation can be written in the form

:

(5) (x+iy+(y-~2y = 0.

The coordinates of the point (—1, 2) satisfy the equation.

But, for any other point (x, y), at least one of the quantities,

x + 1 and y — 2, is not zero, and the left-hand side of the equa-

tion is positive. Thus the point (— 1, 2) is the only point

whose coordinates satisfy the equation. Hence equation (4)

represents a single point (— 1, 2).

Remark. Equation (5) can be regarded as the limiting case

of the equation

when p approaches the limit 0. This equation represents a

circle of radius p for all positive values of p. When p ap-

proaches 0, the circle shrinks down toward the point (— 1, 2)

as its limit. Accordingly, equation (5) is sometimes spoken

of as representing a circle of zero radius or a mill circle.

The General Case. It is now clear how to proceed in the

general case, in order to determine what curve equation (1)

represents. The equation can be written in the form

:

(a* + Ax + i^2
)+ G/

2 + By + ±JB*)= - C+ \A> + \B\
or

-4:0
(•+fH"f)'-^
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If the right-hand side is positive, i.e. if

A2 + B2 -±C>0,

then equation (1) represents a circle, whose center is at the

point (— %A, — IjB) and whose radius is

p = ±VA2 + B2 -±C.

If, however, A2
-f B2 — 4 C = 0, then equation (1) represents

just one point, namely, (—^A, — ^B),— or, if one prefers, a

circle of zero radius or a null circle.

Finally, when A2
-f B2 — 4 C < 0, there are no points whose

coordinates satisfy (1). To sum up, then

:

Equation (1) represents a circle, a single point, or there is no

point whose coordinates satisfy (1), according as the expression

A2 + B2 -4:C

is positive, zero, or negative.

Consider, more generally, the equation

(6) a(x i + f)+bx + cy + d = 0.

If a = 0, but b and c are not both 0, the equation represents

a straight line.

If, however, a ^= 0, the equation can be divided through by

a, and it thus takes on the form

:

^ + 2/2+^ + -2/ + -=0.
a a a

This is precisely the form of equation (1), and hence the above

discussion is applicable to it.

EXERCISES

Determine what the following equations represent. Apply

each time the method of completing the square and examining

the right-hand side of the new equation. Do not merely sub-

stitute numerical values in the formulas developed in the text.
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14 N
¥97*

1. &2 + 2/
2 + 6<c-8?/ = 0.

.dbis. A circle, radius 5, with center at (—3, 4).

2. a2 + ?/
2 - 6u; + 4y + 13 = 0. Ans. The point (3, - 2).

3. #- + ?/
? -f2a; + 42/-t-6=:0. J.ns. No point whatever.

4. 80 +^— 10«+24y = 0.

5. x2 + y
2 — 7x = 5.

6. a2 -fy2 - 6^ + 8*/ + 25 = 0.

7. 49aj2 + 49^-14a; + 28y + 5 = 0.

^4ws. The point (^-,

8. a? + y
l +8y = 10

?

9. a,'
2 + #

2 :=2aa,\

10. x2 +y2 = 2ay.

11. a2 + 2/
2 -6a£-2fo/ + 9a° = 0.

12. a2 + 2/
2 + 4aa-8fo/ + 16&2 = 0.

13. a^+^ + 3 = 0.

14. x2 + y
2 — 2x + 4y+10 = 0.

15. 3a;2 + 32/
2 -4.T + 22/4-7 = 0.

16. 5a2 + 5?/2 - 6a + 8?/ = 12.

17. 3x2 + Sy2 — x + y = 6.

3. Tangents. Let the circle

(1) ^+2/2 =
/0
2

be given, and let Px : (a^, 2/1) be any point of this circle. To
find the equation of the tangent

at Px .

The tangent at P1 is, by Ele-

mentary Geometry, perpendicular to

the radius, OPv Hence its slope,

A/, is the negative reciprocal of the

slope, yi/xx, of OPx ; or

&<*»&)

Fig. 2
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We wish, therefore, to find the equation of the line which

passes through the point (xl9 yx) and has the slope A/ = — xx/yv
By Ch. II, § 2, (II), the equation of this line is

(2) „_ ft „_&(,_«,).

This equation can be simplified by multiplying through by

yx and transposing

:

(3) x& + y$ = x? + 2/i
2

-

Now, the point (xi} yx) is, by hypothesis, on the circle ; hence

its coordinates satisfy the equation (1) of the circle

:

*i
2 + 2/i

2 = P
2

-

The right-hand side of equation (3) can, therefore, be replaced

by the simpler expression, p%

We thus obtain, as the final form of the equation of the

tangent, the following

:

(4) XjX + yxy = p\

In deducing this equation it was tacitly assumed that y x ^= 0,

since otherwise we could not have divided by it in obtaining

A/. The final formula, (4), is true, however, even when y l
= 0,

as can be directly verified. For, if yx
= and xx

= p, then (4)

becomes
px = p

2 or x = p,

and this is the equation of the tangent in the point (p, 0).

Similarly, when yx
= and xx

= — p.

Any Circle. If the given circle is represented by the

equation

(5) {x ^ ayHy_ (3y = ^
precisely the same reasoning can be applied. The equation

of the tangent to (5) at the point Px : to, yx) of that circle is

thus found to be:

(6) fa -a)(x- «) + (2/i
- /?)(*/ - /?)= p^.

The proof is left to the student as an exercise.
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If the equation of the circle is given in the form

(7) a2 + y* + Ax + By + C=0,

or in the form (6), § 2, the equation can first be thrown into

the form (5), and then the equation of the tangent is given

by (6).

Example. To find the equation of the tangent to the circle

(8) 3x* -|- 3?/2 + 8a - 5y =
at the origin.

First, reduce the coefficients of the terms in x2 and y
2 to

unity

:

#2 4-2/2 + fa-f2/ = 0.

Next, complete the squares :

Or (» + f)«+(y._|.)l = f£

Now, apply the theorem embodied in formula (6). Since

®i = 0, 2/i = 0, a = -f, /? = f,

we have f(a + |)- Uv - *)= tt>

or 8# — 5y = 0,

as the equation of the tangent to (8) at the origin.

EXERCISES

Find the equation to the tangent of each of the following

circles at the given point.

1. x2 + y- = 25 at (-3,4). Ans. Sx- 4# + 25 = 0.

2. #2 + y"1 = a' at (0, a). Ans. y = a.

3. x9 + y
9 = 49 at (-7, 0).

4. (jb - 1)
2+ (y + 2)2 = 25 at (4, 2). ^tis. Sx + 4.y = 20.

5. (a + 5)2+(?/ - 3)2 = 49 at (2, 3).

6. x2 + y°~ — 9x + lly = at the origin.
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7. 2 a* + 2y* - Sx - y = 11 at (- 1, 2).

8. Find the intercepts on the axis of x made by the tangent

at (- 5, 12) to

x2 + y
2 = 169. Ans. - 33f

9. Find the area of the triangle cut from the first quadrant

by the tangent at (1, 1) to

Sx2 + 3y* + 8x + 16y = 30.

10. If the equation

x2 + y
1 + Ax + £?/ + C =

represents a circle, and if the point (x^ y{) lies on the circle,

show that the equation of the tangent at this point can be

written in the form :

(9) xxx + ya + A(x + x1)+ ^(y + y1)+C=0.

Suggestion. Find the values of a, /?, and p for the circle,

substitute them in (6), and simplify the result.

11. Do Exs. 6 and 7, using formula (9), Ex. 11.

12. The same for the tangent to the circle in Ex. 9.

13. Show that, if Pi : (xly yx ) is any point of the circle

x 1 + y
2 + Ax + By + = 0,

at which the tangent is not parallel to the axis of y, then the

slope of the tangent at Px is

2xj + A
2yi + B'

4. Circle through Three Points. It is shown in Elementary

Geometry that a circle can be passed through any three points

not lying in a straight line.

If the points are (ajl5 2/x), (x2, y2), and (a?3, y3), and if the

equation of the circle through them is written in the form

x*+ y* + Ax + By+C=0,
then clearly the following three equations must hold

:
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xf + yf +^ + -%! + C= 0,

Xf + 2/2
2 + ^2 + %2 + C= 0,

*8
2 + </3

? + ^3 + %3 + C= 0.

We thus have three simultaneous linear equations for de-

termining the three unknown coefficients A, B, C.

Suppose, for example, that the given points are the

following

:

(1, 1), (1, - 1), (- 2, 1).

The equations can be thrown at once into the form

A + B + C = -2,

A-B+C = -2,

-2A + B+C = -5.

Solve two of these equations for two of the unknowns in

terms of the third. Then substitute the values thus found in

the third equation. Thus the third unknown is completely

determined, and hence the other two unknowns can be found.

Here, it is easy to solve the first two equations for A and B
in terms of C. On subtracting the second equation from the

first, we find

:

2JB = 0; hence B = 0.

Then either of the first two equations gives for A the value

:

A =-C-2.
Next, set for A and B in the third equation the values just

found

:

2C+4+<7= -5, C = -3.

Hence, finally,

A = 1, B = 0, C = - 3,

and the equation of the desired circle is

:

x2 + y
l + x - 3 = 0.

Check the result by substituting the coordinates of the

given points successively in this last equation. They are

found each time to satisfy the equation.
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The circle through the three given points has its center in

the point (- |, 0). Its radius is of length V05 = 1.803.

EXERCISES

Find the equations of the circles through the following

triples of points. Plot the points and draw the circles.

1. (1, 0), (0, 1), the origin. Ans. x* + y
2 — x — y = 0.

2. (1,1), (-1, -1),(1, -1).

3. (5,10), (6,9), (-2,3).

4. The vertices of the triangle of Ex. 15 at the end of

Ch. Ill, p. 63. Show that the point (2, — 1) of that exercise

lies on the circle.

5. The same question for Ex.- 17, p. 63. Show that the

point (0, — ]
of that exercise lies on the circle.

6. The vertices of the triangle of Ch. Ill, Fig. 1. Find the

coordinates of the center and check by comparing them with

those of the point of intersection of the perpendicular bisectors

of the sides of the triangle, as determined in Ch. Ill, § 5.

7. The same question for the triangle of Ch. Ill, Fig. 2.

Check.

8. The vertices of the triangle formed by the coordinate

axes and the line 2x — Sy = 6.

9. The vertices of the triangle whose sides are

:

x-y-l = 0, £ + 2/4-2 = 0, 2a;-?/ + 3 = 0.

Ans. Sx2 + 3^ + 17a; + 16?/ + 25 = 0.

EXERCISES ON CHAPTER IV

1. Find the equation of the circle with the line-segment join-

ing the two points (3, 0) and (5, 2) as a diameter.

2. A circle goes through the origin and has intercepts — 5

and 3 on the axes of x and y respectively. Find its equation.

3. A circle goes through the origin and has intercepts a and

b. Find its equation.
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4. Find the equation of the circle which has its center in

the point (— 3, 4) and is tangent to the line Sx + Sy — 6 = 0.

5. A circle has its center on the line 2x — 3y = and

passes through the points (4, 3), (—2, 5). Find its equation.

6. Find the equation of the circle which passes through the

point (5, — 2) and is tangent to the line 3 x — y — 1 = at

the point (1, 2).

7. There are two circles passing through the points (3, 2),

(—1.0) and having 6 as their radius. Find their equations.

8. There are two circles with their centers on the line,

ox — 3y = 8, and tangent to the coordinate axes. Find their

equations.

9. Find the equations of the circles tangent to the axes and

passing through the point (1, 2).

10. Find the equations of the circles passing through the

points (3, 1), (1, 0) and tangent to the line x — y = 0.

Suggestion. Demand that the center (a, /?) be equally

distant from the two points and the line.

11. Find the equations of the circles passing through the

origin, tangent to the line x -f- y — 8 = 0, and having their

centers on the line x == 2.

12. Find the equations of the circles of the preceding exer-

cise, if their centers lie on the line 2x — y — 2 = 0.

13. Find the equation of the circle inscribed in the triangle

formed by the axes and the line Sx — <iy — 12 = 0.

14. Find the equation .of an arbitrary circle, referred to two

perpendicular tangents as axes.

15. Do the four points (0. 0), (6, 0), (0. - 4), (5, 1) lie on

a circle ?

16. Find the coordinates of the points of intersection of the

circles

x2 + y
2 + 2x- y = 9.
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17. Find the coordinates of the points of intersection of the

circles „ ,
a2 + y

2 + aa + &2/ = 0,

x2 + y
2 + bx—ay = 0.

Orthogonality

18. A circle and a line intersect in a point P. The acute

angle between the line and the tangent to the circle at P is

known as the angle of intersection of the line and the circle at

P. If the line meets the circle in two points, the angles of

intersection at the two points are equal. Determine the angle

in the case of the circle

and the line 2x — y — 5 = 0.

19. A circle and a line are said to intersect orthogonally if

their angle of intersection is a right angle. Prove that the

circle,

xi + y
i — ±x 4_ 6 ?/ + 3 = 0,

is intersected by the line, 5x -f- y = 7, orthogonally.

Suggestion. First answer geometrically the question : What
lines cut a given circle orthogonally ?

20. Show that the circle,

tf+f + Jn + By +0=0,
intersects the line,

ax + by + c = 0,

orthogonally when and only when

aA + bB = 2c.

21. If two circles intersect in a point P, the acute angle

between their tangents at P is known as their angle of inter-

section. If the circles intersect in two points, their angles of

intersection at these points are equal. Find this angle in the

case of the circles,

a^ + ^ = 25,

xi + y^-7x + y = Q.
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22. Prove geometrically that two circles intersect orthog-

onally, that is, at right angles, when and only when the sum
of the squares of their radii equals the square of the distance

between their centers. Then show that the circles

#2 + y* — ±x + 5y- 2 = 0,

2«2 + 2f- + 4 a; - 6y - 19 = 0,

intersect orthogonally.

23. Prove that the two circles,

X2 + yi + AlX + Bly + d = 0,

x* + tf~ + A2x + £22/ + C2 = 0,

intersect orthogonally when and only when

A±A2 + 5^2 = 2d + 2 2.

24. Find the equation of the circle which cuts the circle

x2 + y
2 + 2x =

at right angles and passes through the points (1, 0) and (0, 1).

25. There are an infinite number of circles cutting each of

the two circles,

x* + f - 4y + 2 = 0,

x2 + y
2 + 4?/ + 2 = 0,

orthogonally. Show that they are all given by the equation

x2 + y* + ax-2 = 0,

where a is an arbitrary constant. Where are their centers?

Draw a figure.

26. Find the equation of the circle cutting orthogonally the

three circles,

x* + yi = 9,

a52 + 2/
2 + 3 aj_5 2/ + 6== 0,

cc
2 + yi - 2x + Sy - 19 = 0.

Ans. x
e, + y'i -\-10x + 9 = 0.
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Miscellaneous Theorems

27. Prove analytically that every angle inscribed in a semi-

circle is a right angle.

28. Prove analytically that the perpendicular dropped from

a point of a circle on a diameter is a mean proportional between

the segments in which it divides the diameter.

29. The tangents to a circle at two points P, Q meet in the

point T. The lines joining P and Q to one extremity of the

diameter parallel to PQ meet the perpendicular diameter in

the points R and S. Prove that RT= ST.

30. In a triangle the circle through the mid-points of the

sides passes through the feet of the altitudes and also through

the points halfway between the vertices and the point of inter-

section of the altitudes. This circle is known as the Nine-

Point Circle of the triangle.

For the triangle with vertices in the points (— 4, 0), (2, 0),

(0, 6) construct the circle and mark the nine points through

which it passes.

31. For the triangle in the preceding exercise find the equa-

tion of the nine-point circle, as the circle through the mid-

points of the sides. Ans. 3x2
-f Sy2 + Sx — 11 y = 0.

32. Show that this circle goes through the other six points.

33. For the triangle with vertices in the points (a, 0), (b, 0),

(0, c) find the equation of the nine-point circle, as the circle

through the mid-points of the sides.

Ans. 2c(x l + y
2)—(a + b)cx +(ab - c*)y = 0.

34. Show that this circle goes through the other six points.



CHAPTER V

INTRODUCTORY PROBLEMS IN LOCI. SYMMETRY OF
CURVES

1. Locus Problems.* A point is moving under given condi-

tions; its locus is required. This type of problem the student

studied in Plane Geometry. But he found there no general

method, by means of which he could always determine a locus
;

for each problem he had to devise a method, depending on the

particular conditions of the problem.

Analytic Geometry, however, provides a general method for

the determination of loci. Some simple examples of the

method have already been given. Thus, in finding the equa-

tion of a circle, we determined the locus of a point whose dis-

tance from a fixed point is constant. Again, in deducing the

equation of a line through two points, we found the locus of a

point moving so that the line joining it to a given point has a

given direction.

The method in each of these cases consisted merely in ex-

pressing in analytic terms— i.e. in the form of an equation

involving the variable coordinates, x and y, of the moving

point— the given geometric condition under which the point

moved. We proceed to show how this method applies in less

simple cases.

Example 1. The base of a triangle is fixed, and the dis-

tance from one end of the base to the mid-point of the opposite

side is given. Find the locus of the vertex.

* The locus problems in this chapter may be supplemented, if it is de-

sired, by §§ 6-8 of the second chapter on loci, Ch. XIII, in which the loci

of inequalities and the bisectors of the angles between two lines, together

with related subjects, are considered.

79
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P:(x,V)

Let the triangle be OAP, -with M as the mid-point of AP.
Let a be the length of the base OA, and let I be the given

distance. It is required to

find the locus of P, so that

always

(1) OM= I.

It is convenient to take

x the origin of coordinates in

and the positive axis of x

along the base. The coordi-

The coordinates of the moving

The coordinates of the point

M:(*±2:,V.\

A:(a,o)

Fig. 1

nates of A are then (a, 0).

point P we denote by (x, y).

M&Te
'x + a

The distance OM is

\ 2 ' 2/

Thus condition (1), expressed analytically, is

Z.WFW
Squaring both sides of this equation and simplifying, we have

(2) (x + ay+y* = (2l)\

This equation represents the circle whose center is at (—a, 0)

and whose radius is 2 1. We have shown, therefore, that, if

(1) is always satisfied, the coordinates (x, y) of P satisfy (2),

and P lies on the circle. The locus of P appears, then, to be

the circle.

How do we know, though, that P traces the entire circle ?

To prove this, we must show, conversely, that, if the coordi-

nates (x, y) of P satisfy (2), condition (1) is valid. If . (x, y)

satisfy (2), then, on dividing both sides of (2) by 4 and extract-

ing the square root of each side, we obtain two equations

:
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i)

ii) 4

+«H
x + a\

* J
+

Equation ii) says that a positive or zero quantity equals a

negative quantity, and is therefore impossible. Thus only

equation i) remains. This equation says that OM= I. Hence

condition (1) is satisfied by every point of the circle,* and so

the circle is the locus of P.

We have yet to describe the locus, independently of the

coordinate system, with reference merely to the original tri-

angle.
_
Produce the base, in the direction from A to 0, to the

point C, doubling its length. Then the locus of P is a circle,

whose center is at C and whose radius is twice the given

distance.

Example 2. Determine the locus of a point P which moves

so that the difference of the squares of its distances from two

iixed points P1; P2 is constant,

and equal to c

:

P:(x,y)

Fig. 2

[PP12-PP22=C,

(3)

\PP<?-PP? = C.

Take the mid-point of the

segment PiP2 as origin and

the axis of x along PiP2 .

The coordinates of Px and P2

can be written as (—a, 0), (a, 0) ; those of P, as (x, y).

By Ch. I, § 3,

PP,2 = (*+ fc)2+ 2,2, Pp2
2= (a. _ ay+ y2.

Then the equations (3), expressed analytically, are

* The two points in which the circle cuts the axis of x are exceptions,

since these do not lead to a triangle, OAP.
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(x + a) 2
-f- f -(x - a) 2 -y2 = c,

(x - a)2 -|- y
2 — (x + a)2 — f = c.

These reduce to

(4) 4 «# = c, 4 a# =— c.

Hence, if condition (3) is satisfied, P lies on one or the

other of the lines

c c
(5) 4a 4a

Conversely, if P lies on one or the other of the lines (5),

then (4) holds, and from (4) we show by retracing the steps

that one or the other of the equations (3) is valid.

Consequently, the locus of P consists of two straight lines,

perpendicular to the line PiP2 , and symmetrically situated

with reference to the mid-point of PiP2 , the distance of either

line from the mid-point being c/4 a. Thus the locus consists

of two entirely unconnected pieces, one corresponding to each

of the equations (3). If c = 0, these equations are the same,

and the two lines forming the locus coincide in the perpendic-

ular bisector of the segment PiP2 .

EXERCISES

In solving the following problems, the first step is to find

the equation of a curve,— or the equations of curves,— on

which points of the locus lie. The student must then take

care (a) to show, conversely, that every point lying on the

curve or curves obtained satisfies the given conditions ; and

(6) to describe the locus, finally, without reference to the

coordinate system used.

1. A point P moves so that the sum of the squares of its

distances to two fixed points Plf P2 is a constant, c, greater

than % PiP2
2

. Show that the locus of P is a circle, with its

center at the mid-point of PiP2 .

What is the locus if c = \ P,

P

2
2 ? If c< \

P

XPJ ?
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2. Find the locus of the mid-point of a line of fixed length

which moves so that its end points always lie on two mutually

perpendicular lines.

3. Determine the locus of a point which moves so that the

sum of the squares of its distances to the sides, or the sides

produced, of a given square is constant. Is there any restric-

tion necessary on the value of the constant ?

4. Determine the locus of a point which moves so that the

square of its distance to the origin equals the sum of its

coordinates. Ans. A circle, center at (J, \), radius = \V2.

5. Show that the locus of a point which moves so that the

sum of its. distances to two mutually perpendicular lines

equals the square of its distance to their point of intersection

consists of the arcs of four circles, forming a continuous curve.

Where are the circles, and which of their arcs belong to the

locus ?

6. The base of a triangle is fixed, and the trigonometric

tangent of one base angle is a constant multiple, not unity,

of the trigonometric tangent of the other. Find the locus of

the vertex.

2. Symmetry. In the problems of the preceding paragraph,

the equations of the loci were familiar and the curves they

represented were easily identified. In subsequent chapters,

however, we shall have locus problems to consider in which

the resulting equations will be new
to us. In drawing the curves which

these equations represent, it will be <-*»»>

useful to have at hand the salient

facts concerning the symmetry of

curves.

Symmetry in a Line. Two points,

P and P', are said to be symmetric

in a line L, if L is the perpendicular bisector of PP'.

If L is the axis of x and (x, y) are the coordinates of P, then

it is clear that (x, — y) are the coordinates of P'.

<(X,V)
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Similarly, if L is the axis of y and P has the coordinates

(x, y), then P' has the coordinates (— x, y).

Example 1. Given the curve

(1) 2/2 = x.

Let P : (xlf yi) be any point on it, i.e. let

(2) . y1
* = xl

be a true equation. Then the point P' : (xh — y^, symmetric

to P in the axis of x, also lies on the curve.

' For, if we substitute the coordinates of P' into

xi>y? (1), the result is ( — yx)
2 = xh or (2), and (2) we

know is a true equation. We say, then, that

* the curve (1) is symmetric in the axis of x.

The test for symmetry in the axis of x,

ixv-vj} employed in this example, is general in appli-

\. cation. We state it, and the corresponding

Fig 4
test "^or svmmetry in tne axis °f V> in tne form

of theorems.

Theorem 1. A curve is symmetric in the axis of x if the sub-

stitution of —y for y in its equation leaves the equation unchanged.

Theorem 2. A curve is symmetric in the axis of y if the sub-

stitution of— x for x in its equation leaves the equation unchanged.

Symmetry in a Point. Two points, Pand P', are symmetric

in a given point, if the given point is the mid-point of PP'.

If the given point is the origin of

coordinates and P has the coordinates

(x, y), then the coordinates of P' are —
evidently (- x, -y). (-*,-»°f

Example 2. Consider the curve 5

(3) y = x*.

If P : (#!, 2/x) is any point on this curve, then the point

P' : ( — x1}
— 2h), symmetric to P in the origin, is also on the

curve. For, the condition that P' lies on the curve, namely,

-2/i=(-^i) 3
°r -2/i=-#i3

,

x
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yp

Fig. G

is equivalent to the condition : yx = a^3, that P lie on the curve.

We say, then, that thp curve (3) is symmetric in the origin.

This test, too, is general in application

;

we formulate it as a theorem.

Theorem 3. A curve is symmetric in the

origin of coordinates, if the substitution of

— x for x, and of — y for y, in it* equation

leaves the equation essentially unchanged.

A case in which the test leaves the

equation wholly unchanged is that of the

circle, x2
-f- y

1 = p
2

, or the curve xy = a2

(Fig- 7).

Now the circle in question is symmetric in both axes. It

follows then, without further investigation, that it is sym-

metric in the origin, the point of intersection of the axes.

This conclusion holds always ; in fact,

we may state the theorem.

Theorem 4. If a curve is symmetric

in both axes of coordinates, it is symmetric

in the origin.

The details of the proof are left to

the student as an exercise. It is to be

noted that the converse of the theorem,

namely, that if a curve is symmetric in

the origin, it is symmetric in the axes, is

not true. For, the curve of Example 2

is symmetric in the origin, but not symmetric in either axis
;

this is true also of the curve xy == a2 of Fig. 7.

Fig. 7

EXERCISES

1. Prove Theorem 4.

2. Test, for symmetry in each axis and in the origin, the

curves given in the following exercises of Ch. I, § 7 :

(a) Exercise 2
;

(c) Exercise 7
;

(6) Exercise 6

;

(d) Exercise 8.
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In each of the following exercises test the given curve for

symmetry in each axis and in the origin. Plot the curve.

3. xy + 1 = 0. 6. y
1 + 4 x = 0.

4. 10?/ = a;
4
. 7. oj

2 —
2/

2 = 4.

5. 20a = 2/5. 8 . x2 + 2?/
2 = 16.

EXERCISES ON CHAPTER V

1. The base of a triangle is fixed and the ratio of the

lengths of the two sides is constant. Find the locus of the

vertex. Ans. A circle, except for one value of the constant.

2. A point P moves so that its distance from a given line

L is proportional to the square of its distance to a given point

K, not on L. If P remains always on the same side of L as

K, show that its locus is a circle.

3. Find the locus of P in the preceding exercise, if it re-

mains always on the opposite side of L from K. Does your

answer cover all cases ?

4. If, in Ex. 2, K lies on L and P may be on either side of

L, what is the locus of P?
5. Three vertices of a quadrilateral are fixed. Find the

locus of the fourth, if the area of the quadrilateral is constant.

6. Find the locus of a point moving so that the sum of

the squares of its distances from the sides of an equilateral

triangle is constant. Discuss all cases.

Ans. A circle, center at the point of intersection of the me-

dians ; this point ; or no locus.

7. The feet of the perpendiculars from the point P: (X, Y)

on the sides of the triangle with vertices in the points (0, 0),

(3, 0), (0, 1) lie on a line. Find the locus of P.

Ans. The circle circumscribing the triangle.

8. The preceding problem, if the triangle has the points

(2, 0), (- 3, 0), (0, 4) as vertices.

9. Problem 7, for the general triangle, with vertices at

(a, 0), (6, 0), (0, c).
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10. Show that the equation of the circle described on the

line-segment joining the points (i\, y^, (x2 , y2) as a diameter

may be written in the form

(x - x{)(x - x2) + (y- yx){y - y2)= 0.

Suggestion. Find the locus of a point P moving so that the

two given points always subtend at P a right angle.

11. The two points, P and P', are symmetric in the line,

x — y = 0, bisecting the angle between the positive axes of x

and y. Show that, if (x, y) are the coordinates of P, then

(y, x) are the coordinates of P'.

12. Prove that a curve is symmetric in the line x — y = 0"

if the interchange of x and y in its equation leaves the equation

unchanged.

13. If P and P' are symmetric in the line x -f- y = and

P has the coordinates (x, y), show that the coordinates of P'

are (-y, - x).

14. Give a test for the symmetry of a curve in the line

x + y=0.

15. Test each of the following curves for symmetry in the

lines x — y = and x -\-y = 0.

(a) xy = a2
;

(c) x l — y
2 = a2

;

(b) xy = - a}
;

(d) (x - yf- 2x-2y = 0.

16. Plot the curve of Ex. 15, (d).

In each of the following exercises find the equation of the

locus of the point P. Plot the locus from the equation, mak-

ing all the use possible of the theory of symmetry.

17. The distance of P from the line x — 2 = equals its

distance from the point (2, 0).

18. The sum of the distances of P from the points (3, 0)

and (- 3, 0) is 10.

19. The difference of the distances of P from the points

(5, 0) and f-5, 0) is 8.



CHAPTER VI

THE PARABOLA

1. Definition. A parabola is defined as the locus of a point

P, whose distance from a fixed line D is always equal to its

distance from a fixed point F, not on

the line. It is understood, of course,

that P is restricted to the plane deter-

mined by D and F.

One point of the locus is the mid-point

A, Fig. 2, of the perpendicular FE
dropped from F on D. Through A
draw T parallel to D. Then no other

point on T, or to the left of T, can belong-

to the locus, for all such points are

clearly nearer to D than they are to F.

the locus can be

To the right of T
D, cuttings AF, pro-

in S. With ES as

describe a circle,

Further points of

obtained as follows,

draw L parallel to

duced if necessary,

radius and F as center

cutting L in P and Q. Then P and Q
lie on the locus.

A large number of points having been

obtained in this way, smooth curve

i F

Fig. 2

can be passed through them. The curve

is symmetric in the line AF, and evi-

dently has rasa tangent.

The line D is called the directrix, and the point F, the focus,

of the parabola; A is the vertex, and the indefinite line AF,
the axis ; FP is a focal radius.

88
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The student is familiar with, the fact that all circles are

similar; i.e. have the same shape, and differ only in size. A
like relation holds for any two parabolas. Think of them as

lying in different planes, and choose in each plane as the unit

length the distance be-

tween the focus and the

directrix. Then the one

parabola, in its plane, is

the replica of the other,

in its plane. Conse-

quently, the two parab-

olas differ only in the

scale to which they are

drawn, and are, there-

fore, similar.

The details of the

proof just outlined can be supplied at once by showing that

the triangles FPM and MFE are similar, respectively, to

F'PM' and M'F'E', the angles if/ in Fig. 3 being equal by

construction. Hence
FP = EF
F'P' E'F''

i.e. focal radii, FP and F'P', which make the same angle with

the axes always bear to each other the same fixed ratio.

Fig

EXERCISES

1. Take a sheet of squared paper and mark D along one of

the vertical rulings near the edge of the paper. Choose F
at a distance of 1 cm. from D. Then the points of the locus

on the vertical rulings— or on as many of them as -one desires

— can be marked off rapidly with the compasses. Make a

clean, neat figure.

' 2. Place a card under the curve of Ex. 1 and, with a needle,

prick numerous points of the curve through on the card, and

mark, also, the focus and axis in this way. Cut the card alon.q
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the curve with, sharp scissors. The piece whose edge is con-

vex forms a convenient parabolic ruler, or templet, to be used

whenever an accurate drawing is desired.

A small hole at the focus and a second hole farther along

the axis make it possible, in using the templet, to mark the

focus and draw the axis.

A second templet, to twice the above scale, will also be

found nseful.

3. The focus of a parabola is distant 5 units from the

directrix. In a second parabola, this distance is 2 units. How
much larger is the first parabola than the second, i.e., how do

their scales compare with each other ?

2. Equation of the Parabola. The first step is to choose

the axes of coordinates in a convenient manner. Evidently,

one good choice would be to take

the axis of x perpendicular to D
and passing through F. Let us do

this, choosing the positive sense

from A toward F.

For the axis of y three simple

choices present themselves, namely

:

(a) through A
;

(b) along D
;

(c) through F.

Perhaps (b) seems most natural

;

but (a) has the advantage that the

curve then passes through the

origin, and this choice turns out in practice to be the most

useful one. We will begin with it.

Let P : (x, y) be any point on the curve. Denote the dis-

tance of F from D by m. Then

Fig. 4

EF m. AW-*, and BA-Z.
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ByCh. I, §3

On the other hand, the distance of P from D is

.By definition, these two distances are equal, or:

/;

(i) v(* + ^= x+ -.

Sqnare each side of the equation, so as to remove the radical,

and expand the binomials :

(2) a?— mx+—+ y
2 = a2 + ma 4- ^-

The result can be reduced at once to the form

(3)
y'1 = 2mx,

and this is the equation of the parabola, referred to its vertex

as origin and to its axis as the axis of x.

The proof of this last statement is not yet, however, com-

plete ; for it remains to show conversely that, if (x, y) be any

point whose coordinates satisfy (3), it is a point of the parab-

ola. From (3) we can pass to (2). On extracting the square

root of each side of (2), we have two equations

:

> V(-f)
2

, , , m

9 v(-iy+r—(' +f>
one of which must be true, and both of which may conceivably

be true. Now, x is a positive quantity or zero ; for, by

hypothesis, the coordinates of the point (x, y) satisfy equation

(3). Hence ii) is impossible, for it says that a positive or

zero quantity is equal to a negative quantity. Thus only i)
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remains, and this equation is precisely the condition that the

distance of (x, y) from D be equal to its distance from F.

Hence the point (#, y) lies on the parabola, q. e. d.

EXERCISES

1. Show that the choice (&) leads to the equation

(4) 7f = 2mx-m2
.

This is the equation of the parabola referred to its directrix

and axis as the axes of y and x respectively, with the positive

axis of x in the direction in which the curve opens.

2. Show that the choice (c) leads to the equation

(5) y
2 = 2mx + ra2.

This is the equation of the parabola when the focus is the

origin and the positive axis of x is along the axis of the curve

in the direction in which the curve

opens.
P:(x y)

3. Taking the axes as indicated in
•x Fig. 5, show that the equation of the
D parabola is

Fig. 5 x2 — 2my.

4. Choosing the axis of y as in the foregoing question, show
that the equation of the parabola is

x2 = 2my — m2
,

in case the axis of x is along D, and is

x2 = 2my + m2
,

in case F is taken as the origin.

5. If the axis of x is taken along the axis of the parabola,

but positively in the direction from F toward D, and if the

origin is taken at the vertex, show that the equation of the

curve is

v2 = — 2mx.
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6. If the axis of y is taken along the axis of the parabola^

but positively in the direction from F toward D, and if the

origin is taken at the vertex, show that the equation of the

curve is

x2 = — 2 my.

7. Determine the focus and directrix of each of the follow-

ing parabolas

:

(a) f< = 4<c. Ans. (1,0); x + 1 = 0.

(b) y = x\ Ans. (0,1); 4^ + 1 = 0.

(c) 3tf-5x=0. (d) 3y* + 22x = 0.

(e) y = -2x*. (/) 5s2 + 12^ =

(g) y*=px. (h) x* = ±ay.

8. It appears from the foregoing that any equation of the

form
y'l =z±Ax

i
or x* = ±Ay,

where A is any positive constant, represents a parabola with

its vertex at the origin. Formulate a general rule for ascer-

taining the distance of the focus of such a parabola from the

vertex.

9. Find the equations of the following parabolas

:

(a) Vertex at (0, 0) and focus at (2, 0).

(6) Vertex at (0, 0) and 2 x + 5 = as directrix.

(c) Vertex at (0, 0) and focus at (0, - f).

(d) Vertex at (0, 0) and 2 y — 1 = as directrix.

(e) Focus at (0, 0) and vertex at (— 3, 0).

(/) Focus at (0, 0) and 3y + 4 = as directrix.

(g) Focus at (6, 0) and axis of y as directrix.

(h) Focus at (0, — 7) and axis of x as directrix.

3. Tangents. The student will next turn to Chapter IX
and study §§ 1, 2. It is there shown that the slope of the

parabola

(1) y- sc 2 mx
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at any one of its points (xl9 yx ) is, in general, given by the

formula

(2) A = ™;
2/i

and that the equation of the tangent line at any point (x1} y{)

can, without exception, be written in the form

(3) yiy = m{x + Xi).

Latus Rectum. The chord, PP', of a parabola which passes

through the focus and is perpendicular to the axis is called the

latus rectum (plural, latera recta).

Its half-length is found by setting x = m/2
in the equation of the parabola, and solving

1 for the positive y :

tf = 2m^=m\ y = m.

Thus the length, PP, of the latus rectum

is 2m.

The tangent at either P or P' makes an

angle of 45° with the axis of x. For, the

slope of the tangent at P is, from (2) :

m_m_
^

2/i rn,

Let E be the point in which the tangent at P meets the

axis of x. Since FP = m, and AFEP=4:5 , EF= m and so

E lies on the directrix. Consequently, the tangents at P and

P* cut the axis of x at the point of intersection of the directrix

with that axis.

This theorem can also be proved by writing down the equa-

tion of the tangent at P,

. m

and finding the intercept of this line on the axis of x.

Fig. 6
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EXERCISES

1. Find the equation of the tangent to the parabola y
1 — Sx

at the point (12, 6). Arts, x - 4 y + 12 = 0.

2. Find the equation of the normal to the same parabola

at the given point. Ans. ±x + y = 54.

3. Find the length of the latus rectum of the parabola of

Ex.1.

4. Show that the tangents to any parabola at the extremi-

ties of the latus rectum are perpendicular to each other.

5. Show that the tangent to the parabola y
1 = ±x at the

point (36, 12) cuts the negative axis of x at a point whose dis-

tance from the origin is 36.

6. At what point of the parabola of Ex. 5 is the tangent

perpendicular to the tangent mentioned in that exercise ?

Ans. (^p -i).

7. Show that the two tangents mentioned in Exs. 5 and

6 intersect on the directrix, and that the chord of contact of

these tangents, i.e. the right line drawn through the two points

of tangency, passes through the focus.

8. Show that the tangent to the parabola (1) at any point

P cuts the negative axis of x at a point M whose distance

from the origin is the same as the distance of P from the axis

of y.

9. Prove that the two parabolas,

y- = 4x + 4 and ^ = _6a' + 9,

intersect at right angles. Assume that the slope of the parab-

ola of Ex. 2, § 2, at the point (xi} yx) is m/yx .

10. If two parabolas have a common focus and their axes

lie along the same straight line, their vertices, however, being

on opposite sides of the focus, show that the curves cut each

other at right angles.

4. Optical Property of the Parabola. If a polished reflector,

like the reflector of the headlight of a locomotive or a search-
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light, be made in the form of a paraboloid of revolution, i.e.

the surface generated by a parabola which is revolved about

its axis, and if a source of light be placed at the focus, the

reflected rays will all be parallel.

This phenomenon is due to the fact that the focal radius FP
drawn to any point P of the parabola makes the same angle

with the tangent at P as does the

line through P parallel to the axis.

The proof of this property can

be given as follows. Let the

tangent at P : (#b yL) cut the axis

of x in M. Then the length of

OM is equal to xh by § 3, Ex. 8.

Furthermore, OF= m/2. Hence
the distance from M to F is

Fig. 7
MF=xx +

But this is precisely the distance of P from D, § 2, and

hence, by the definition of the parabola, it is also equal to FP.

We have, then, that MF= FP. Consequently, the triangle

MFP is isosceles, and

y.FMP=y.MPF.
But ^.FMP^^SPT,

and the proposition is proved.

The result can be restated in the following

Theorem. The focal radius FP of a parabola at any point

P of the curve and the parallel to the axis at P make equal angles

with the tangent at P.

Heat. If such a parabolic reflector as the one described

above were turned toward the sun, the latter's rays, being

practically parallel to each other and to the axis of the reflector,

would, after impinging on the polished surface, proceed along

lines, all of which would pass through F. Thus, in particu-

lar, the heat rays would be collected at F, and if a minute
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charge of gunpowder were placed at F, it might easily be

fired.

It is to this property that the focus (German, Brennpunkt)

owes its name. The Latin word means hearth, or fireplace.

The term was introduced into the science by the astronomer

Kepler in 1604.

EXERCISES ON CHAPTER VI

1. A parabola opens out along the positive axis of y as axis.

Its focus is in the point (0, 3) and the length of its latus

rectum is 12. Find its equation. Ans. x2 = 12 y.

2. A parabola has its vertex in the origin and its axis along

the axis of x. If it goes through the point (2, — 3), what is its

equation ? Ans. 2y l — 9x = 0.

3. Show that the equation of a parabola with the line x = c

as directrix and with the point (c -f- ra, 0) or (c — ra, 0) as

focus is

y
2 = 2ra(a? — c) — ra2

, or y
1 = — 2 m(x — c) — m2

.

Hence prove that every parabola with the axis of x as axis

has an equation of the form : x — ay'1 -+• b, where a and b are

constants, a =£ 0.

4. Find the equation of the parabola which has its axis

along the axis of x and goes through the two points (3, 2),

(- 2, - 1). Ans. Sx = htf- - 11.

5. Prove that every parabola with an axis parallel to the

axis of y has an equation of the form

y — ax2
-f- bx + c,

where a, b, c are constants, a =£ 0.

Suggestion. Find the equation of the parabola which has

the line y = k as directrix and the point (I, k + m) or (I, k — m)

as focus.

6. Find the equation of the parabola which has a vertical

axis and goes through the points (0, 0), (1, 0), and (3, 6).

Ans. y = x* — x.
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7. A circle is tangent to the parabola y
1 = x at the point

(4, 2) and goes through the vertex of the parabola. Find its

equation.

8. What is the equation of the circle which is tangent to

the parabola y
1 = 2mx at both extremities of the latus rectum ?

Ans. 4:X2 + 4y • — 12 mx + m • = 0.

9. Find the coordinates of the points of tangency of the

tangents to the parabola y - = 2mx which make the angles 60°,

45°, and 30° with the axis of the parabola. Show that the

abscissae of the three points are in geometric progression, and

that this is true also of the ordinates.

10. Show that the common chord of a parabola, and the

circle whose center is in the vertex of the parabola and whose

radius is equal to three halves the distance from the vertex to

the focus, bisects the line-segment joining the vertex with the

focus.

11. Let N be the point in which the normal to a parabola

at a point P, not the vertex, meets the axis. Prove that the

projection on the axis of the line-segment PN is equal to one

half the length of the latus rectum.

12. On a parabola, P is any point other than the vertex,

and N is the point in which the normal at P meets the axis.

Show that P and N are equally distant from the focus.

13. The tangent to a parabola at a point P, not the vertex,

meets the directrix in the point L. Prove that the segment

LP subtends a right angle at the focus.

14. Show that the length of a focal chord of the parabola

if = 2mx is equal to xx + x2 .+ m, where xXl x2 are the abscissae

of the end-points of the chord. Hence show that the mid-

point of a focal chord is at the same distance from the direc-

trix as it is from the end-points of the chord.

Exercises 15-26. The following exercises express properties

of the parabola which involve an arbitrary point on the parab-

ola. In order to prove these properties, it will, in general, be
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necessary to make actual use of the equation which expresses

analytically the fact that the point lies on the parabola.

15. An arbitrary point P of a parabola, not the vertex, is

joined with the vertex A, and a second line is drawn through

P, perpendicular to AP, meeting the axis in Q. Prove that

the projection on the axis of PQ is equal to the length of the

latus rectum.

16. The tangent to a parabola at a point P, not the vertex,

meets the tangent at the vertex in the point K. Show that

the line joining K to the focus is perpendicular to the tangent

at P.

17. The tangent to a parabola at a point P, not the vertex,

meets the directrix and the latus rectum produced in points

which are equally distant from the focus. Prove this

theorem.

18. Prove that the coordinates of the point of intersection

of the tangents to the parabola y*=2mx at the points (a^, yj,

(%> 2/2) may De Put iu the form

\2m' 2 J

Suggestion. To reduce the coordinates to the desired form,

use the equations which express analytically the fact that the

two points lie on the parabola.

19. Show that the intercept on the axis of x of the line join-

ing the points (x
x, y1) i

(scg, y2) of the parabola y
2 = 2mx may be

expressed as

2m

By means of the results of the two preceding exercises prove

the following theorems.

20. The point of intersection of two tangents to a parabola

and the point of intersection with the axis of the line joining

their points of contact are equally distant from the tangent at

the vertex, and are either on it or on opposite sides of it.



100 ANALYTIC GEOMETRY

21. Tangents to a parabola at the end-points of a focal

chord meet at right angles on the directrix.

22. If the points of contact of two tangents to a parabola

are on the same side of the axis and at distances from the axis

whose product is the square of half the length of the latus

rectum, the tangents intersect on the latus rectum produced.

23. The end-points of a chord of a parabola, which sub-

tends a right angle at the vertex, are on opposite sides of the

axis and at distances from the axis, whose product is the

square of the length of the latus rectum.

24. The chords of a parabola, which subtend a right angle

at the vertex, pass through a common point on the axis ; this

point is at a distance from the vertex equal to the latus rectum.

25. The distance from the focus of a parabola to the point-

of intersection of two tangents is a mean proportional between

the focal radii to the points of tangency.

26. The tangents to a parabola at the points P and Q inter-

sect in T, and the normals at P and Q meet in N. Then the

segment TM, where M is the mid-point of TN, subtends a

right angle at the focus.

Locus Problems

27. Show that the locus of a point which moves so that

the difference of the slopes of the lines joining it to two fixed

points is constant is a parabola through the two fixed points

What are its axis and vertex ?

28. Determine the locus of a point which moves so that its

distance from a fixed circle equals its distance from a fixed

line passing through the center of the circle.

Ans. Two equal parabolas, with foci at the center of the

circle and axes perpendicular to the fixed line.

29. The base of a triangle is fixed and the sum of the trigo-

nometric tangents of the base angles is constant. Find the

locus of the vertex.



CHAPTER VII

THE ELLIPSE

1. Definition. An ellipse is defined as the locns of a point

P, the sum of whose distances from two given points, F and

F', is constant. It is found con- ___p

venient to denote this constant

by 2 a. Then

Fig. 1

(1) FP+F'P=2a.

It is understood, of course, that P
always lies in a fixed plane pass-

ing through F and F'.

The points F and F' are called

the foci of the ellipse. It is clear that 2 a must be greater

than the distance between them.

Mechanical Construction. From the definition of the ellipse

a simple mechanical construction readily presents itself. Let

a string, of length 2 a, have its ends fastened at F and F', and

let the string be kept taut by a pencil point at P. As the

pencil moves, its point obviously traces out on the paper the

ellipse.

The student will find it convenient to use two thumb tacks

partially inserted at F and F'. A silk thread can be tied to

one of the thumb tacks and wound round the other so that

it will not slip. Thus a variety of ellipses with different foci

and different values of a can be drawn.

Let the student make finally one ellipse in this manner, and

draw it neatly.

101
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Center, Vertices, Axes. It is obvious from the definition,—
and the fact becomes more striking from the mechanical con-

struction,— that the ellipse is symmetric in the line through

the foci. "" It is also symmetric in the perpendicular bisector

of FF r
. Hence it is symmetric, furthermore, in the mid-point,

0, of the line FF'.

The indefinite line through

the foci, F and F', is called the

transverse axis of the ellipse

;

the perpendicular bisector of

FF', the conjugate axis. The

point is called the center of

the ellipse; the points A, A',

its vertices.

The line-segments AA and

BB', which measure the length and breadth of the ellipse,

are known respectively as the major axis and the minor

axis of the ellipse. The word "axes" refers sometimes to

the transverse and conjugate axes, and sometimes to the major

and minor axes, or their lengths, the context making clear in

any case the meaning.

When P is at A, equation (1) becomes

FA + F'A = 2a.

But FA = AF'.

Hence AA'=2a and OA = a.

Thus it appears that the length of the semi-axis major, OA,
is a. Let the length of the minor axis be denoted by 26, and

the distance between the foci by 2 c. Then, from the triangle

FOB, we have

:

(2) a* = V + c\

Note that, of the three quantities a, b, and c, the quantity a

is always the largest.

Eccentricity. All circles have the same shape, i.e. are simi.

lar ; and the same is true of parabolas. But it is not true of
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ellipses. As a measure of the roundness or flatness of an

ellipse a number, called the eccentricity, has been chosen ; this

number is denned as the radio c/a and is denoted by e :

(3) e=£.
a

Since c is always less than a, it is seen that the eccentricity

of an ellipse is always less than unity :

e<l.

In terms of a and b, e has the value

:

(4) ,^,
All ellipses with the same eccentricity are similar, and con-

versely. For the shape of an ellipse depends only on b/a, the

ratio of its breadth to its length, and since from (4)

all ellipses for which the ratio b/a is the same have the same

eccentricity, and conversely.

A circle is the limiting case of an ellipse whose foci ap-

proach each other, the length 2 a remaining constant. The

eccentricity approaches 0, and a circle is often spoken of as an

ellipse of eccentricity 0.

EXERCISES

1. The semi-axes of an ellipse are of lengths 3 cm. and 5 cm.

Find the distance between the foci, and the eccentricity.

Ans. 8; i.

2. The eccentricity of an ellipse is § and the semi-axis

minor is 4 in. long. How long is the major axis ?

3. The major axis of an ellipse is twice as great as the

minor axis. What is the eccentricity of the ellipse ?

4. The major axis of an ellipse is 39 yards, and the eccen-

tricity, 1%. Find the minor axis.
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5. Express the eccentricity of an ellipse in terms of b and c.

6. Show, from Fig. 2, that the eccentricity is given by the

formula
e = cos OFB.

7. Give a proof, based on similar triangles, that two ellipses

having the same eccentricity are similar.

2. Geometrical Construction. Points on the ellipse may be

obtained with speed and accuracy by a simple geometrical

construction. Draw the major
~^~

axis and mark the points A, F
}

F',A on it. Mark an arbitrary

—+, h 1—i—»— point Q between F and F.
With F as center and AQ as

> , radius describe a circle, and

FlG 3
with F' as center and A'Q as

radius describe a second circle.

The points of intersection of these two circles will lie on the

ellipse, since the sum of the radii is

AQ + A'Q=2a.

It is, of course, not necessary to draw the complete circles,

but only so much of them as to determine their points of in-

tersection. Moreover, four points, instead of two, can be ob-

tained from each pair of settings of the compasses by simply

reversing the roles of F and Ff
.

EXERCISES

1. Construct the ellipse for which c = 2± cm., a = 4 cm.

2. From the ellipse just constructed make a templet, with

holes at the foci and with the axes properly drawn.

3. Construct the ellipse whose axes are 4 cm. and 6 cm.

3. Equation of the Ellipse. It is natural to choose the axes

of the ellipse as the coordinate axes (Fig. 4). Let the foci lie
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on the axis of x, and let P : (x, y) be any point of the ellipse.

Then, from (1), § 1

.

y _

Fig. 4

(1) V(x-c) 2+y2 + V(x + c) 2+ y
2 = 2a.

Transpose one of the radicals and square

:

(x — c) 2+ y
2= (x + c) 2+ y

2 — 4 aV(# 4- c)2 + y
i + 4

a

2
.

Hence

(2) a
.V(s 4- c) 2 + 2/

2 = a2 + ca.

To remove this radical, square again :

(3) a2x2 + 2 cfe + a2c2 + a2
y
2 = a4 + 2 a?cx + &x'\

or (a2 - c2)a2 + a?y2 = a2(a2 - c2).

But, by (2), § 1,

and hence

or

(5)

c2 = 62

62
ic
2 + az

y
2 = a26s

,

21+£=1.

This is the standard form of the equation of the ellipse, re-

ferred to its axes as the axes of coordinates. The proof, how-

ever, is not as yet complete, for it remains to show, conversely,

that any point (x, y) whose coordinates satisfy equation (5)

is a point of the ellipse. To do this, it is sufficient to show

that x, y satisfy (1). From (5) we mount up to (4) and thence

to (3), since all of these are equivalent equations. When.
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however, we extract a square root we obtain two equations

each time, and so we are led, finally, to the four equations

± V(a> - c)2+ y
2± V(ar + c) 2+ f = '2 a,

the ambiguous signs being chosen in all possible ways. The
four equations can be characterized as follows :

i) + +; ii) +.-;
iii) - +; iv) - -.

We wish to show that i) is the only possible one of the four

equations. This is done as follows.

Equation iv) is satisfied by no pair of values for x and y,

since the left-hand side is always negative and so can never be

equal to the positive quantity 2 a.

Equations ii) and iii) say that the difference of the distances

of (x, y) from F and F' is equal to 2 a, and hence greater than

the line FF'= 2 c. Thus, in the triangle FPFr the difference

of two sides is greater than the third side, and this is absurd.*

Hence equations ii) and iii) are impossible and equation i)

alone remains, q. e. d.

Consequently, if we start with equation (5) as" given and

require that a > b, then (5) represents an ellipse with

semi-axes a and b and foci in the points (± c, 0), where

c=Va2 -62
.

The Focal Radii. From equation (2) we obtain a simple

expression for the length of the focal radius, FT. Dividing

(2) by a and remembering that c/a = e, we have :

V(a? + c) 1 4- y
l = a + ex.

But the value of the left-hand side of this equation is precisely

F'P. Hence

(6) F'P=a + ex.

* If, in particular, the point (x, y) lay on FF', we should not, it is

true, have a triangle. But it is at once obvious that in this case, too,

equations ii) and iii) are impossible.
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If, in transforming (1), the other radical had been transposed

to the right-hand side and we had then proceeded as before,

we should have found the equation

:

aw{x — c) ' + y
l = a2 — ex.

From this we infer that

V (x — c)2 + y
2 = a — ex,

or

(7) FP = a-ex.

EXERCISES

1. What is the equation of the ellipse whose axes are of

x2 v2

lengths 6 cm. and 10 cm. ? Ans. — + ^-= 1.

2. Find the coordinates of the foci of the ellipse of Ex. 1.

3. The foci of an ellipse are at the points (1, 0) and (—1, 0),

and the minor axis is of length 2. Find the equation of the

ellipse. Ans. x2 + 2y2 = 2.

4. Find the lengths of the axes, the coordinates of the foci,

and the eccentricity of the ellipse

25a;2 + 1692/2 = 4225.

5. An ellipse, whose axes are of lengths 8 and 10, has its

center at the origin and its foci on the axis of y. Obtain its

equation.

6. Show that, if B > A, the equation

A2 B>

still represents an ellipse with its axes lying along the axes of

coordinates; but the foci lie on the axis of y at the points

(0, C) and (0, - (T), where

B2 = A2 + (P.

The eccentricity is

-i
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7. Find the lengths of the axes, the coordinates of the foci,

and the value of the eccentricity for each of the following

ellipses :

(a) 9«2 + 42/
2 = 36

(b) 3a2 + 21/2 = 12

(c) x* + 2y2 = 4

(d) 5a? + 3^* = 46:

(e) 2a2 + 72/
2 = 10

(/) 11a2 + 2/
2 = 3.

t'

\f F
J

Fig. 5

4. Tangents. The ellipse has the remarkable property that

the tangent to the curve at any poiyit makes equal angles with

the focal radii drawn to that point

:

i) Mechanical Proof. The simplest

proof of this theorem is a mechanical

one. Think of a flexible, inelastic string

of length 2 a with its ends fastened at

the foci, F and F'. Suppose a small,

smooth bead to be threaded on this string. Let a cord be

fastened to the bead and then pulled taut, so that the cord

and the two portions of the string will be under tension.

Evidently, the bead can be held in this manner at any point.

(No force of gravity is supposed to act. The strings and bead

may be thought of as resting on a smooth horizontal table.)

The forces that act on the bead are

:

(a) the tension S in the cord

;

(6) two equal tensions, R, in the string,

directed respectively toward the foci.#

Draw the parallelogram of forces for the

forces B. It will be a rhombus, and so

the resultant of these forces will bisect

the angle between the focal radii.

On the other hand, the force S, equal and opposite to this

resultant, is perpendicular to the tangent at P. In fact, if

Fig. 6

* Since the bead is smooth, the tension in the string is the same at all

its points, and so, in particular, is the same on the two sides of the bead.
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instead of the flexible string we had a smooth rigid wire, in the

form of the ellipse, for the bead to slide on, the bead would be

held at P by the cord exactly as before. But the reaction of

a smooth wire is at right angles to its tangent. This is the

very conception of a smooth wire. For otherwise, if 8 were

oblique, it could be resolved into a normal and a tangential

component. But the smooth wire could not yield a reaction,

part of which is along the tangent

It follows, then, that the normal at P bisects the angle be-

tween the focal radii, and hence these make equal angles with

the tangent at P, q. e. d.

ii) Proof by Means of Minimum Distances. A Lemma. A
barnyard is bounded on one side by a straight river. The

cows, as they come from the pasture,

enter the barnyard by a gate at A, jVs

go to the river to drink, and then >

keep on to the door of the barn at B. —-p—
What point, P, of the river should a " ^^ • ,

cow select, in order to save her steps FlG 7

so far as possible ?

It is easy to answer this question by means of a simple con-

struction. From B drop a perpendicular BM on the line of

the river bank, L, and produce it to B', making MB' — BM.
Join A with B', and let AB' cut L at C. Then C is the posi-

tion of P, for which the distance under consideration,

^IP + PB,
is least.

For, the straight line AB' is shorter than any broken line

APB' :

AB'< APB'.

But PB = PB'
Hence

AB'= AC + CB

and CB = CB'.

and APB'=AP+PB.
It follows, then, that

AC + CB<AP+PB,
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if P is any point of L distinct from C. Hence C is the point

for which APB is a minimum.

The point C is evidently characterized by the fact that

-%ACN=y.BCM.

We can state the result, then, by saying that the point P>for

which the distance APB is least, is the point for ivhich

%.APN=y.BPM.

Optical Interpretation. We have used a homely example of

cows and a barnyard. The problem we have solved is, however,

identical with the optical problem of finding the point at

which a ray of light, emanating from A, will strike a plane

mirror L, if the reflected ray is to pass through B. For, the

law of light is, that it will travel the distance in the shortest

possible time, and hence it will choose the shortest path.

Application to the Ellipse. The application of this result

to the ellipse is as follows. The tangent to any smooth, closed,

convex curve evidently is characterized

by the fact that it meets the curve in

one, and only one, point.

Let P be any point of the ellipse.

Draw the tangent, T, at P. Let Q be

any point of T distinct from P. Now
FlG

'

8
F'P+ FP= F'R + FB,

since the sum of the focal radii is the same for all points of an

ellipse. But
FR<BQ+ FQ

\ and so

F'B + FR< F'B + BQ + FQ = F'Q + FQ.

Therefore
F'P+FP<F'Q + FQ.

Hence P is that point of T for which the distance F'QF is

least, and consequently the lines F'P and FP make equal

angles with T, q. e. d.
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EXERCISE

Show that the normal of an ellipse at any point distinct from

the vertices A, A' cnts the major axis at a point which lies

between the foci.

5. Optical and Acoustical Meaning of the Foci. Let a thin

strip of metal,— say, a strip of brass a yard long and a quarter

of an inch wide,— be bent into the form of an ellipse and

polished on the concave side. Let a light be placed at one of

the foci. Then the rays, after impinging on the metal, will

be reflected and will come together again at the other focus,

which will, therefore, be brilliantly illuminated.*

The same is true of heat, since heat rays are reflected from

a polished surface by the same law as that of light rays. If,

then, a candle is placed at one focus and some gunpowder at the

other, the powder can be ignited by the heat from the candle.

Sound waves behave in a similar manner. The story is told

of the Eatskeller in Bremen, the walls of which are shaped

somewhat like an ellipse, that the city

fathers were remarkably well informed

concerning the feelings and views of the

populace. For, the former drank their pIG . 9

wine at a table which was situated at a

focus, and thus could hear distinctly the conversation at a dis-

tant table, which stood at the other focus and about which the

Burger congregated.

6. Slope and Equation of the Tangent. The student will

next turn to Ch. IX, § 2, where the slope of the ellipse

a 1 b-

* The statement is, of course, strictly true only for such rays as travel

in the plane through the foci, which is perpendicular to the elements of

the cylinder formed by the polished hand. Since, however, only a nar-

row strip of this cylinder is used, other rays will pass very near to the

second focus and contribute to the illumination there.
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at the point (x1} y{) is found to be

(1)
V%.

X = -
a^i

The equation of the tangent line at this point is

(2)

Lotus Rectum. The latus rectum of an ellipse is defined as

a chord perpendicular to the major axis and passing through

a focus. The term is also used to mean
the length of such a chord.

Thus, in the ellipse

25
+

16 '

Fig. 10

one focus is at the point (3, 0). The length

of the latus rectum is twice that of the positive ordinate

corresponding to this point. Setting, then, x = 3 in the equa-

tion of the curve and solving for that ordinate, we have

16 25 25'
»-¥-*

Hence the length of the latus rectum is 6$.

EXERCISES

1. Find the equation of the tangent to the ellipse

225 25

at the point (9, 4). Ans. x + ±y = 25.

2. Find the equation of the normal to the ellipse of Ex. 1

at the same point. Ans. 4a; — y = 32.

3. At what point does the tangent to the ellipse

2^ + 3^ = 14

at the point (— 1, 2) cut the axis of y ?
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4. At what angle does the straight line through the origin,

which bisects the angle between the positive axes of coordinates,

cut the ellipse Sx2 + ±y" = ~ ? Ans. 81° 53'.

5. Find the area of the triangle cut off from the first quad-

rant by the tangent to the ellipse of Ex. 3 at the point (1, 2).

Ans. 8i

6. Eind the length of the latus rectum of the ellipse of

Ex. 1. Ans. 3J.

7. The same for the ellipse of Ex. 3.

8. Show that the length of the latus rectum of the ellipse

£= 1

is given by any one of the expressions

b<a,

2a(l-

Find its value in terms of c and e.

9. Eind the length of the latus rectum of the ellipse

25 x2 + 16 y* = 400. Ans. 6|.

10. Prove that the minor axis of an ellipse is a mean pro-

portional between the major axis and the latus rectum.

7. A New Locus Problem. Given a line D and a point F
distant m from D. To find the locus of a point P such that

the ratio of its distance FP from F to

its distance MP from D is always

equal to a given number, e

:

FP =
MP

It is understood that P shall be re-

stricted to the plane determined by F
and D.

If, in particular, e = 1, the locus Fig. 11

(i) or FP=€MF.
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is a parabola with D as directrix and F as focus ; Ch.

VI, § 1.

To treat the general case, let D be taken as the axis of y
and let the positive axis of x pass through F. Then

x.FP= -V{x- m) 2+ y\ MP= ±

the lower sign holding only when x is negative, and (1) be-

comes

(2) -V(x - m)2+ y
2 = ± ex.

On squaring and transposing we obtain the equation

:

(3) (1 - e2)x2 -2mx + tf + m2=0.

This is the equation of the proposed locus.

The student will now turn to Ch. XI and study carefully

§ 1.

EXERCISES

1. Take e = \ and m = 3, the unit of length being 1 cm.

With ruler and compasses construct a generous number of

points of the locus,# and then draw in the locus with a clean,

firm line.

2. Work out the equation of the locus of Ex. 1 directly,

using the method of the foregoing text, but not looking at the

formulas. Ans. 3 x2 + 4 y
2 — 24 x + 36 = 0.

3. Take e = f and m = 4, the unit of length being 1 cm.

Draw the locus accurately, as in Ex. 1.

4. Work out directly the equation of the locus of Ex. 3.

Ans. 16 x2 + 25y2 - 200 x = - 400.

5. By means of a transformation to parallel axes show that

the curve of Ex. 2 is an ellipse whose center is at the point

(4, 0) and whose axes are of lengths 4 and 2V3. What is its

eccentricity ?

* The details of the construction are an obvious modification of the

corresponding construction for the parabola in Ch. VI, § 1. A circle of

arbitrary radius is drawn with its center at F, and this circle is cut by a

parallel to D, whose distance from D is twice the radius of the circle.
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6. Show that the curve of Ex. 4 is an ellipse whose axes

are
7-J

and 6. What is its eccentricity ?

8. Discussion of the Case e < 1. The Directrices. From
equation (3) of § 7 follows:

(1)
, 2 m

, v
2

a,'
2

: X -f
71V

1 _ e
2 1 _ £2 1 _ £2

The first two terms on the left-hand side are also the first two

in the expansion of

m \ 2
9 2 m . m2

) = x2 x -\

1 - e
2

; 1 - e
2 (1 - c2)

2

If, then, we add the third term of the last expression to both

sides of (1), we shall have

:

2m , m2

x'-—
1-e2

x + + y
1 m2 ni l

(1-e2
)
2 1-e2 (1-e2

)
2 1-e2

'

or

(2) X — m y
2 e2m2

1- (1 - e2)
2

This equation reminds us strongly of the equation of an

ellipse. In fact, if we transform to parallel axes with the

new origin, 0', at the point

m

the equations of transformation are

(3) *_,__£_,

and (2) then takes on the form

^o = 0,

(4)

or

(5)

where

(6)

x'2 V
l_ e

2 (1_ £2)2'

a- o-

Fig. 12

b = em

V1 - ?
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Thus the locus is seen to be an ellipse with its center, 0', at

the point

(?) (^,0)
the semi-axes being given by (6).

The value of c is given by the equation c2 = a2 — b'
2
. Hence

(8) c ==

1-e2

The eccentricity, e = c/a, is now seen to be precisely e

:

e = c;

i.e. the given constant, e, turns out to be the eccentricity of the

Finallv, F is one of the foci. For, the distance from F to 0'

is

OO f-OF= m em
1 _ e2 1 _ £

2>

and this, by (8), is precisely c.

The line D is called a directrix of the ellipse. Its distance

from the center is

m me l__a

"^"l-e^T"!'
00'

The Directrices. From the symmetry of the ellipse it is

clear that there is a second directrix, D', on the other side of

the conjugate axis, parallel to that

axis, and at the same distance

from it as D. This line D' and

the focus Ff stand in the same re-

lation to the ellipse as the first

D line, D, and the focus F. Thus

the ellipse is the locus of a point

so moving that its distance from a

focus always bears to its distance from the corresponding

directrix the same ratio, e, the eccentricity.

Since the distance of D from the center of the ellipse is a/e,

the equations of the directrices of the ellipse

Fig. 13



are

THE ELLIPSE 117

5+g= i
>

*>*>>

X = — - # = -<
e e

EXERCISES

1. Show that the distances of the vertices, A and A', from

are

:

OA = -^-, OA'
1 + e' 1-e

2. Collect the foregoing results in a syllabus, arranged in

tabular form, giving each of the quantities a, b, c, 00', OA,

OA', OF, OF' in terms of m and e.

3. Work out each of the quantities of Ex. 2 directly for the

ellipse of § 7, Ex. 4, and verify the result by substituting the

values e = f, m = 4 in the formulas of the syllabus.

4. Between the jfrre constants of the ellipse, a, b, c, e, m,

there exist three relations, which may be written in a variety

of ways ; as, for example,

i) cC- = 6' + c - ; ii) e = - ; iii) m = ~~ e
a.

a e

By means of these relations, any three of the five quantities

can be expressed in terms of the other two. Thus, in Ex. 2,

m and e are chosen as the quantities in terms of which all

others shall be expressed.

Taking the semi-axes, a and b, (a>b), as the preferred pair,

express the other quantities in terms of them.

5. Show that the tangent to the ellipse

25^16

at an extremity of a latus rectum cuts the transverse axis in

the same point in which this axis is cut by a directrix.
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6. The same for any ellipse.

7. Prove directly that, if P is any point of the ellipse

a2 V
b < a,

the ratio of its distance from a focus to its distance from the

corresponding directrix is equal to the eccentricity.

8. Show that in an ellipse the major axis is a mean propor-

tional between the distance between the foci and the distance

between the directrices.

9. Show that the distances from the center and a focus of

an ellipse to the directrix corresponding to the focus are in

the same ratio as the squares of the semi-axis major and the

semi-axis minor.

9. The Parabola as the Limit of Ellipses. We have proved

that, when e < 1, equation (3), § 7, represents an ellipse with

eccentricity e — e. We
know that , if e = 1, the

equation represents a

parabola. If, then, in the"

equation we allow e to

approach 1 through values

< 1, the ellipse which the

equation defines ap-

proaches a parabola as its

limit.

We can visualize the

ellipse, going over into

a parabola, by drawing

a number of ellipses

having the same value of

are increasing toward 1

. The directrix D,

Fig. 14

m, but having values for c

as their limit, viz. e ==
-J-,

which

along the axis of y, and the focus F: (m, 0) are the same for

all the ellipses. But the center 0' and the right-hand vertex
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A' of each successive ellipse are farther away from 0. and

their distances from 0, namely,

00' m
0A' = m

1-e2
'

1-e'

increase without limit. Thus, as e approaches 1, the ellipse

approaches as its limit the parabola whose directrix is D and.

whose focus is F.

10. New Geometrical Construction for the Ellipse. Para-

metric Representation. Let it be required to draw an ellipse

when its axes, AA' and BB\ are given.

Describe circles of radii a = OA and

b = OB, with the origin O as the

common center. Draw any ray from

O, making an angle <j> with the posi-

tive axis of x, as shown in the

figure. Through the points Q and R
draw the parallels indicated. Their

point of intersection, P, will lie on

the ellipse. For, if the coordinates of

Pbe denoted by (#, y), it is clear that

(1) x = a cos 4>, y = b sin
<f>.

From these equations
<f>

can be eliminated by means of the

trigonometric identity

Fig. 15

Hence

(2)

sin2
<f>

-1- cos2
<£ = 1.

if-

Conversely, any point (x, y) on the ellipse (2) has corre-

sponding to it an angle
<f>,

for which equations (1) are true.

Equations (1) afford what is known as a parametric repre-

sentation of the coordinates of a variable point (x, y) of the

ellipse in terms of the parameter
<f>.

When b = a, the ellipse

becomes a circle, and the equations (1) become

(3) x—a cos <j>, y = a sin
<f>.
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These parametric representations, though, little used in Ana-

lytic Geometry, are an important aid in the Calculus.

The larger of the two circles in Fig.

15 is commonly called the auxiliary

circle of the ellipse, and the points It

and P are known as corresponding points.

The angle
<f>

is called the eccentric angle.

EXERCISE

FlG By means of the foregoing method,

draw on squared paper an ellipse whose

axes are of length 4 cm. and 6 cm.

EXERCISES ON CHAPTER VII

1. The earth moves about the sun in an elliptic orbit.* The
shortest and longest distances from it to the sun are in the

ratio 29 : 30. What is the eccentricity of the orbit ?

2. Show that the slopes of the tangents to an ellipse at the

extremities of the latera recta are ± e.

3. The axes of an ellipse which goes through the points

(4, 1), (2, 2) are the axes of coordinates. Find its equation.

4. The center of an ellipse is in the origin and the foci are

on the axis of x. The ellipse has an eccentricity of -| and goes

through the point (12, 4). What is its equation?

25^16 25

5. Solve the preceding problem if the foci may lie on either

axis of coordinates.

6. Find the equations of the ellipses which have the axes

of coordinates as axes, go through the point (3, 4), and have

their major and minor axes in the ratio 3 : 2.

7. Show that the ellipses represented by the equation

2x i + 3y*- = '&,

* The planets describe ellipses about the sun as a focus, and the comets

usually describe parabolas with the sun as the focus.
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where c2 is an arbitrary positive constant, are similar. What
is the common value of the eccentricity ?

8. How many ellipses are there with eccentricity
-J-,

having

their centers in the origin and their foci on the axis of a:?

Deduce an equation which represents them all.

Ans. 3 x2 + 4?/* = c2.

9. The foci of an ellipse lie midway between the center

and the vertices. What is the eccentricity ? How many such

ellipses are there, with centers in the origin and foci on the

axis of x? Write an equation which represents them all.

10. The line joining the left-hand vertex of an ellipse with

the upper extremity of the minor axis is parallel to the line

joining the center with the upper extremity of the right-

hand latus rectum. Answer the questions of the preceding

exercise.

11. The foci of an ellipse subtend a right angle at either

extremity of the minor axis. What is the eccentricity?

Find the equation of all such ellipses with centers in the

origin and foci on the axis of y.

12. Prove that the ratio of the distance from a focus of an

ellipse to the intersection with the transverse axis of the

normal at a point P, and the distance from this focus to P
equals the eccentricity of the ellipse.

13. The projections of a point P of an ellipse on the trans-

verse and conjugate axes are Px
and P2 . The tangent at P

meets these axes in Tx and T2 . Prove that OPj • OTx
= a2 and

OP2
' OT2 = b2

, where is the center and a and b are the

semi-axes of the ellipse.

14. Prove that the segment of a tangent to an ellipse be-

tween the point of contact and a directrix subtends a right

angle at the corresponding focus.

15. Determine the points of an ellipse at which the tangents

have intercepts on the axes whose absolute values are propor-

tional to the lengths of the axes.
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16. Through, a point M of the major axis of an ellipse a line

is drawn parallel to the conjugate axis, meeting the ellipse in

P and the tangent at an extremity of the latus rectum in Q.

Show that the distance MQ equals the distance of P from the

focus corresponding to the latus rectum taken.

17. Prove that the line joining a point P of an ellipse with

the center and the line through a focus perpendicular to the

tangent at P meet on a directrix.

' 18. Prove that the distance from a focus F to a point P of

an ellipse equals the distance from F to the tangent to the

auxiliary circle at the point corresponding to P.

19. Find the equation of a circle which is tangent to the

ellipse

^4-^ = 1
a* b2

at both ends of a latus rectum.

20. In an ellipse whose major axis is twice the minor axis,

a line of length equal to the minor axis has one end on the

ellipse, the other on the conjugate axis. The two ends are

always on opposite sides of the transverse axis. Prove that

the mid-point of the line lies always on the transverse axis.

21. A number of ellipses have the same major axis both in

length and position. A tangent is drawn to each ellipse at

the upper extremity of the right-hand latus rectum. Prove

that these tangents all pass through a point.

Exercises 22-28. In these exercises, in which properties in-

volving an arbitrary point P of an ellipse are to be proved, it

will, in general, be necessary to make actual use of the equa-

tion expressing the fact that the point P lies on the ellipse.

22. The tangent to an ellipse at a point P meets the tan-

gent at one vertex in Q. Prove that the line joining the other

vertex to P is parallel to the line joining the center to Q.

23. The lines joining the extremities of the minor axis with

a point P of an ellipse meet the transverse axis in the points
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M and N. Prove that the semi-axis major is a mean propor=

tional between the distances from the center to M and N,

24. Prove the theorem of the preceding exercise when the

major and minor axes, and the transverse and conjugate axes,

are interchanged.

25. Show that the segment of a directrix, between the

points of intersection of the lines joining the vertices with a

point on an ellipse, subtends a right angle at the correspond-

ing focus.

26. Prove that the product of the distances of the foci of

an ellipse from a tangent is a constant, independent of the

choice of the tangent.

27. Let F' and F be the foci of an ellipse and P any point

on it. Prove that b 2
: FK1 = F'P: FP, where FK is the dis-

tance from F to the tangent at P.

28. The normal to an ellipse at a point P meets the axes in

Nx and JV2 . Show that PNX
• PN2 is equal to the product of

the focal radii to P.

Loci

29. A point moves so that the product of the slopes of the

two lines joining it to two fixed points is a negative constant.

What is its locus ?

30. A circle whose diameter is 10 cm. is drawn, center at 0.

On a radius OA a point B is marked distant 4 cm. from 0.

If OQ is any second radius, show how to construct, with ruler

and compasses, a point P on OQ, whose distance from the

circle equals its distance from B. In this way plot a number
of points on the locus of P.

31. Find the equation of the locus of the point P of the

preceding exercise. Take the origin of coordinates at the

mid-point of OB.

32. The base of a triangle is fixed and the product of the

tangents of the base angles is a positive constant. Find the

locus of the vertex.



CHAPTER VIII

THE HYPERBOLA

Fig. 1

1. Definition. A hyperbola is defined as the locus of a point

,
the difference of whose distances from two given points, F

and F', is constant. It is found

convenient to denote this constant

by 2 a. Then

FP-F'P=2a,
or F'P-FP=2a. /

It is understood, of course, that P
is restricted to a particular plane

through F and F'.

The points F and F f are called the foci of the hyperbola.

It is clear that 2 a must be less than the distance between

them. Denote this distance by 2 c.

Geometrical Construction. Draw the indefinite line FF',

mark the mid-point, 0, of the segment FF'
}
and the points A

and A' each at a distance a

from 0:
P+ P*

OA=OA' = a; OF=OF' = c. —h—

b

•-

The point A lies on the locus ;
F A °

for, ^T
FA = c — a, F'A = c + a,

and hence F'A - FA = 2 a.

Likewise, u4' lies on the curve.

Mark any point, N, to the right of F. With radius AN&nd
center F, describe a circle. Next, with radius ^L'^Tand center

124

Q

-t—4-
A f JV

Q
Fig. 2
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F'A

B'

Fig. 3

A\F

F', describe a second circle. The points P and Q in which
these circles intersect are points of the locus. For,

F'P- FP= A'N- AN= A'A = 2 a.

Two more points, P' and Q', can be obtained from the same
pair of settings by interchanging the centers, F and F', of the

circles.

By repeating the construction a number of times, a goodly

array of points of the hyperbola can be obtained. These
points will lie on two distinct arcs,

symmetric to each other in the

perpendicular bisector BOB' of

FF'. Thus it will be seen that

the hyperbola consists of two

parts, or branches, as they are

called. These branches, besides

being the images of each other in

BB', are each the image of itself

in FF'. It is natural to speak of the indefinite straight lines

FF' and BB' as the axes of the hyperbola. FF' is called the

transverse, BB' the conjugate axis ; O is the center, and A, A'

are the vertices.

EXERCISES

1. Taking c = 3 cm. and a = 2 cm., make a clean drawing of

the corresponding hyperbola.

2. Reproduce the drawing on a rec-

tangular card and, with a sharp knife

or a small pair of scissors, cut out the

center of the card along the hyperbola

and two parallels to the transverse axis.

On the templet which remains make
holes at the foci and draw the two axes.Fig. 4

2. Equation of the Hyperbola. The treatment here is paral-

lel to that of the ellipse, Ch. VII, § 3. Let the transverse axis
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be chosen as the axis of x ; the conjugate axis, as the axis of y.

Then the equation of the right-hand branch of the hyperbola

can be written in the form

(x,v)

(1) V(a> + c) 2+ f-- s/(x - c) 2 + y
2 = 2 a.

(c,o) Transpose the first radical and square

:

(x -c)
2+y2 =(x + c)

2+y2

F:(-c,o),

Fig. 5
4aV(a + c)2+2/2 + 4a2

.

Hence

av(# + c)2+ y
2 = a2 + ex.(2)

Square again

:

a2
a;
2 + 2 a2cx + a2c2 -f- a2

i/
2 = a4 + 2 a2ca; + c2»2,

or

(3) (a2 - c>2 + ay-= a2(a2 - c2).

This is precisely the same equation that presented itself in

the case of the ellipse ; but the locus is a curve of wholly dif-

ferent nature. The reason is, that a and c have different

relative values. In the ellipse, a was greater than c, and hence

a? — c2 was positive. It could be denoted by b2
. Here, a is

less than c ; a2— c2 is negative, and it cannot be set equal to b2
.

It can, however, be set equal to — b2
. This we will do

:

(4) a2 -c2 = -&2
, or c2 = a2 +62

,

thus defining the quantity b in the case of the hyperbola by

the equation

:

6=Vc2 -a2
.

The final equation between x and y can now be written in

the form

(5) £_£«!;

This equation is satisfied by the coordinates of all points on

the right-hand branch, as is seen from the way in which it

was deduced. It is, however, also satisfied by the coordinates

of all points on the left-hand branch. For such a point, the
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signs of both radicals in (1) will be reversed. Starting, now,

with the new equation and proceeding as before, we find the

same equation (3), which we may again write in the form (5),

and thus the truth of the statement is established.

Is (5) satisfied by the coordinates of still other points ? To
answer this question, let (x, y) be any point whose coordinates

satisfy (5). Then, starting from (5), we retrace our steps,

admitting, each time that we extract a square root, both signs

of the radical as conceivably possible. Thus we can be sure

that (x, y) will satisfy one of the four equations

± V(a + c) ;+ y-± -V(x -c)-*+ y
2 = 2 a,

corresponding to the four conceivable choices of the signs of

the radicals

:

i) - + ;
iii) - -

;

ii) + -; iv) + +.

If (x, y) satisfies i) or ii), the point lies on the hyperbola.

The other two cases are impossible. For, case iii) says that a

negative quantity is equal to a positive quantity, and case iv)

says that F'P+FP=2 a. Now F'P + FP, being the sum of

two sides of the triangle FPF', is greater than the third side,

FF', or 2 c. But 2 a is actually less than 2 c. Hence we have

a contradiction, and this case cannot arise.

We have shown then, finally, that (5) is the equation of the

hyperbola.

EXERCISE
Plot the hyperbola - '

25 16

directly from its equation, taking 1 cm. as the unit of length.

3. Axes, Eccentricity, Focal Radii. The transverse and the

conjugate axis have already been defined in § 1. The segment

AA' of the transverse axis is called the major aa»s,. and this

term is also applied to its length, 2 a. The segment BB' of

the conjugate axis, whose center is at and whose length is
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2 b, is called the minor axis, and this term is also applied to

its length, 2 b.

The major axis of an ellipse is always longer than the minor

axis. In the case of the hyperbola, however, this is not al-

ways true. For example, if 2 c and 2 a

are taken as 10 and 6 respectively, then

2 6 = 8. Thus the major axis of the

hyperbola is to be understood as the

principal axis, but not necessarily as the

longer axis.

The eccentricity of the hyperbola is defined as the number

e = £-
a

Since c is greater than a, the eccentricity of a hyperbola is

always greater than unity.

The eccentricity characterizes the shape of the hyperbola.

All hyperbolas having the same eccentricity are similar, differ-

ing only in the scale to which they are drawn, and conversely
;

cf. Exercise 8.

The focal radii FP, F'P can be represented by simple ex-

pressions, similar to those which presented themselves in the

case of the ellipse. On dividing equation (2), § 2, through by

a, we have

:

V(#+ c)'+ y
l = a + ex.

Hence, when P is a point of the right-hand branch,

(1) F'P= ex+a.
The evaluation,

(2) FP = ex- a,

is obtained in a similar manner.*

If P is a point of the left-hand branch, these formulas

become

:

(3) F'P = -(ex + a); FP=- (ex - a).

* P being a point of the right-hand branch, x is positive and greater

than or equal to a ; also, e> 1. Hence ex> a, and ex — a is positive,

as it should be.
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EXERCISES

1. Find the lengths of the axes, the coordinates of the foci,

and the value of the eccentricity for each of the following

hyperbolas.

(a) g-1= 1. Ana. 8, 6
; (5, 0), (- 5, 0) ; 1\

(b) tf- y = a\ Ans. 2a, 2 a; (a V2, 0), (- a V2, 0) ; V2.

(c) 4x--3 2
/-

> = 24. (e) 5^-6^ = 8.

(d) 2^-^ = 4. (/) 6^-9^ = 4.

2. If the eccentricity of a hyperbola is 2 and its major axis

is 3, what is the length of its minor axis ? Ans. 3V3.

3. How far apart are the foci of the hyperbola in Ex. 2 ?

Ans. 6.

4. What is the equation of the hyperbola whose eccentricity

is V2 and whose foci are distant 4 from each other ?

Ans. x l — y
2 = 2.

5. The extremities of the minor axis of a hyperbola are in

the points (0, ± 3) and the eccentricity is 2. Find the equa-

tion of the hyperbola.

6. Show that, in terms of a and b, e has the value

_ Va* + ¥
e =

7. Express b in terms of a and e.

8. Prove that two hyperbolas which have the same eccen-

tricity are similar, and conversely.

9. Establish formulas (3).

4. The Asymptotes. Two lines, called the asymptotes, stand

in a peculiar and important relation to the hyperbola. They
are the lines

bx j bx
y =— and y =

a a
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Let a point P : (x, y) move off

y ) along a branch of the hyperbola

(1) :£_ t.— i
a2 62

Fig. 7

and let this take place, for def-

initeness, in the first quadrant.

The slope of the line OP is

MP= y

OM x

Since the coordinates (x, y) of P satisfy (1), it follows that

b
(2)

and hence

(3)

V Vcc2

x a * x1

When P recedes indefinitely, x increases without limit, and

the right-hand side of this equation approaches the limit b/a.

Thus we see that the slope of OPapproaches that of the line OQ,

(4)
b

y = -x,
a

as its limit, always remaining, however, less than the latter

slope, so that P is always below OQ.

It seems likely that P will come indefinitely near to this

line ;
but this fact does not follow from the

foregoing, since P might approach a line

parallel to (4) and lying below it. In that

case, all that has been said would still be true.

That P does, however, actually approach

(4) can be shown by proving that the dis-

tance PQ approaches as its limit. Now,

PQ=MQ-MP,
and, from (4),

MQ = -x.
a

Fig. 8
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Furthermore, MP is the ^-coordinate of the point P on the

hyperbola

:

a

Hence PQ = - [x—vV — a*].
a

To find the limit approached by the square bracket, we re-

sort to an algebraic device. The value of the bracket will

clearly not be changed if we multiply and divide it by the

expression x + V#2 — a2
:

x+Vx2— a2

But the numerator of the last expression reduces at once to a2

Hence
2

x _ Va2 - a2 = a

x-\-^/x —a1

From this form it is evident that the bracket approaches

when x increases indefinitely; and hence the limit of PQ is

zero,
5* q. e. d.

Similar reasoning, or considerations of symmetry, applied in

the other quadrants, show that in the second and fourth

quadrants P approaches the line

(o) y = ~\ X
>

while in the third quadrant, as in the first, P approaches (4).

The equations (4) and (5), of the asymptotes, can also be

written in the form

*_.v=o, *+'J=o.
a b a b

* The limit approached by the variable x — Vx2 — a2 can be found

geometrically as follows. Construct a variable

right triangle, one leg of which is fixed and of

length a. the hypothenuse being variable and of JvP-

length x. Then the above variable, x — Vaj2 — a2
,

is equal to the difference in length between the

hypothenuse and the variable leg. This difference obviously approaches

as x increases indefinite! y.
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It is easy to remember these equations, since they can be

written down by replacing the right-hand side of (1) by 0, fac-

toring the left-hand side :

(H)(M)=°>
and putting the individual factors equal to zero.

The slopes of the asymptotes are b/a and — b/a. Conse-

quently, the asymptotes make equal angles with the transverse

axis.

Since the ratio of b to a is unrestricted, the asymptotes can

make any arbitrarily assigned angle with each other. If, in

particular, b = a, this angle is a right angle, and the curve is

called a rectangular, or equilateral, hyperbola. Its equation can

be written in the form :

(6) rf - f = a2
.

Its eccentricity is e = V2.

Construction of the Asymptotes. Mark with heavy lines the

major and minor axes, and through the extremities of each

draw lines parallel to the other,

thus obtaining a rectangle. The
diagonals of this rectangle, pro-

duced, are the asymptotes, since

their slopes are clearly ± b/a.

The diagonals of the rectangle

have lengths equal to the distance

2 c between the foci, for, c2 = a2 + b2

and the lengths of the sides of the rectangle are 2 a and 2 b.

If the acute angle between an asymptote and the transverse

axis is denoted by a, then

e = sec a.

Fig. 10

EXERCISES

1. Find the equations and slopes of the asymptotes of the

hyperbolas of Exercise 1, § 3. Draw the hyperbolas.
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2. Show that the asymptotes of the hyperbola

Ax°- - By 1 = C,

where A, B, and C are any three positive quantities, are given

by the equations

VAx + y/By = 0, VAx - ^/By = 0.

3. Find the equation of the hyperbola whose asymptotes

make angles of 60° with the axis of x and whose vertices are

situated at the points (1, 0), and (— 1, 0). Ans. Sx" — y
2 = 3.

4. Show that the slopes of the asymptotes are given by

the expression ± Ve2 — 1.

5. The slope of one asymptote of a hyperbola is
-f.

Find

the eccentricity. Ans. e -— 1^.

6. The distance of a focus of a certain hyperbola from the

center is 10 cm. , and the distance of a vertex from the focus is

2 cm. What angle do the asymptotes make with the conju-

gate axis? Ans. 53° 8'.

7. Show that the circle circumscribed about tne rectangle

of the text passes through the foci.

8. A perpendicular dropped from a focus F on an asym-

ptote meets the latter at E. Show that OE = a, and EF = b.

9. Find the equation of the equilateral hyperbola whose

foci are at unit distance from the center.

10. Find the equation of the equilateral hyperbola which

passes through the point (—5, 4).

5. Tangents. The method of finding the slope of an ellipse,

Ch. IX, § 2, can be applied to the hyperbola, and it is thus

shown that the slope of this curve,

x2 y2 _H
a*~~b>- >

at the point (xl} y{) is
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The equation of the tangent of the hyperbola at this point is

a)
x

x
x

a'- 62

Theorem. TJie tangent of a hyperbola at any point bisects the

angle betiveen the focal radii.

To prove this proposition we recall the theorem of Plane

Geometry which says that the bisector of an angle of a triangle

divides the opposite side into seg-

ments which are proportional to the

{P:(xh y{) adjacent sides. It is easily seen

that the converse* of this proposi-

tion is also true, and hence it is

sufficient for our proof to show that

(2) ^ = Z^.
v ; FM F'M
We already have simple ex-

pressions for the numerators. If

P'- (
xi> Vi) be a point of the right-hand branch of the curve,

then, by § 3,

FP = efy - a ; F'F= exx + a.

To compute the denominators, find where the tangent at P,

whose equation is given by (1), cuts the axis of x. Denoting

the abscissa of M by x\ we have :

r.2

Fig.

x' =
Xl

Now, FM=OF-OM=c-x',
a*

and c -x' = c-
Xi xx

Bute = ae, and so

CXi -a* — a{ex x -a)

Thus c — x' = — (exx — a),

Xi

* Let the student prove this proposition as an exercise.
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and we arrive finally at the desired expression for FM :

FM= ~{ex
x
- a).

In a similar manner it is shown that

F'M=-(ex1 + a).

From these evaluations it appears that

— = - and
F'P= a

FM x1 FM xx
'

Hence (2) is a true equation, and the proof is complete for the

case that P lies on the right-hand branch. Since, however,

the curve is symmetric in the conjugate axis, the theorem is

true for the left-hand branch also.

Latus Rectum. The latus rectum of a hyperbola is defined

as a chord passing through a focus and perpendicular to the

transverse axis. The term is also applied to the length of

such a chord.

EXERCISES

1. Find the slope of the hyperbola 4x2 —
?/
2 = 15 at the

point (2, — 1). Ans. — 8.

2. Find the equation of the tangent of the hyperbola of

Ex. 1 at the point there mentioned. Ans. Sx -\- y = 15.

3. Find the angle at which the line through the origin bi-

secting the angle between the positive axes of coordinates cuts

the hyperbola of Ex. 1. Ans. 30° 58'.

4. Find the length of the latus rectum of the hyperbola

y~=l. Ans. 4i
16 9

5. Find the length of the latus rectum of the hyperbola of

Ex. 1. Ans. 15.49.

6. Find the equation of the normal of the hyperbola

25 144
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at the extremity of the latus rectum which lies in the first

quadrant. Ans. 25 x + 65y = 2197.

7. Show that the length of the latus rectum of the hyperbola

is
2 62 62

8. Prove that the tangents at the extremities of the latera

recta have slopes ± e.

9. In an ellipse, the focal radii make equal angles with the

tangent. Prove this theorem by the method employed in this

paragraph to prove the corresponding theorem relating to the

hyperbola.

6. New Definition. The Directrices. The locus defined

in Ch. VII, § 7, can now be shown to be a hyperbola when
c > 1. The analytic treatment given there and in § 8 down
to equation (2) and the transformation (3) holds unaltered

for the present case.

When, however, e > 1, the new origin, O', lies to the left of

O, in the point ( ^— , ), and it is more natural to write

(3) in the form

(i) x' = x + m

and likewise (4) as

(2) s'2 -_L =

2 -l

€W

2/' = 2/>

€ , _ 1 (£2 _ 1)2

This equation passes over into the form

(3)

on setting

(4)

a? b2 *

a=s T 6 = em

Ve2 -1
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Thus the locus is seen to be a hyperbola with its center, 0',

at the point (

—

o

m
, 0), the semi-axes being given by (4).

The value of c is given by the equation c- = a- + b2
. Hence

(5)
e2 -l

The eccentricity, e =c/a, is seen to be precisely e

:

e = c,

and thus the given constant, e, turns out to be the eccentricity of the

hyperbola.

Finally, F is one of the foci. For, the distance from 0' to F
is

?

O fO+OF=-^— +m
E
2_!^

c2_i'

and this, by (5), is precisely c.

The line D is called a directrix of the hyperbola. Its dis-

tance from the center is

m cm 1 a0^ =
2 -l

2%e Directrices. There is a second directrix, namely, the

line D' symmetric to D in the conjugate axis. It is clear

from the symmetry of the figure that what is true of the hy-

perbola with respect to the focus F and the corresponding

directrix D is equally true with respect to the focus F' and

the directrix D'. Accordingly, the hyperbola is the locus of a

point whose distance from a focus bears to its distance from

the corresponding directrix a fixed ratio, the eccentricity.

The equations of the directrices of the hyperbola,

a2 6 2

are sc = - and x = — -•
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EXERCISES

1. Take e = 2 and m=3, the unit of length being 1 cm.

With ruler and compasses construct a generous number of

points of the locus, and then draw in the locus with a clean,

firm line.*

2. Work out the equation of the locus of Ex. 1 directly,

using the method of Ch. VII, § 7, but not looking at the

formulas. Ans. 3 x1 — y
2 + 6 x = 9.

3. By means of a transformation to parallel axes show
that the curve of Ex. 2 is a hyperbola whose center is at the

point (—1, 0) and whose axes are of lengths 4 and 4V3.

4. Show that in the general case the distances of the

vertices, A and A', from are :

OA =-^ % A'0= m
€ + r €-1

5. Collect the results of this paragraph in a syllabus,

arranged in tabular form, giving each of the quantities, a, b, c,

O'O, OA, A'O, OF, and F'O, in terms of m and e.

6. Work out each of the quantities of Ex. 5 directly for

the curve of Ex. 2 and verify the result by substituting the

values e = 2, m = 3 in the formulas of the syllabus.

7. Show that the tangent to the hyperbola

16 9

at an extremity of a latus rectum cuts the transverse axis in

the same point in which this axis is cut by a directrix.

8. The same for any hyperbola.

* The footnote of p. 114 applies in the present case with the obvious

modification that the distance of the parallel from D must now be half

the radius of the circle. Moreover, two parallels to D must now be drawn,

the second one, as soon as the radius has increased sufficiently, giving

points on the left-hand branch.
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9. Prove directly that, if P is any point of the hyperbola

the ratio of its distance from a focus to its distance from the

corresponding directrix equals the eccentricity.

10. Prove that the ratio of the distance between the foci of

a hyperbola to the distance between the directrices equals the

square of the eccentricity.

7. The Parabola as the Limit of Hyperbolas. Summary.

Equation (3) of Ch. VII, § 7, namely,

(1) (1 — e2)x- + y
1 — 2mx + m- = 0,

represents a hyperbola when e > 1 and a parabola when e = 1.

If, then, we let c approach 1 through values greater than 1,

the hyperbola which (1) represents will approach a parabola

as its limiting position.

Suppose, for example, that we take m = 2 and let e take on

successively the values 2,
1-J-, 1-J-, 1-J-,

•••. Drawing the corre-

sponding hyperbolas, we find that, whereas the directrix D
and the right-hand focus F are always fixed, the center and the

left-hand vertex keep receding to the left, and that their

distances from 0, namely,

, = ^n_ A ,Q== m
-1' 6-1'

increase without limit. Thus, when e approaches 1, the left-

hand branch of the hyperbola recedes indefinitely to the left

and disappears in the limit, whereas, meanwhile, the right-

hand branch gradually changes shape and in the limit becomes

the parabola whose directrix is D and whose focus is F.

Summary. Let us now combine the results of § 6 with those

of § 8, Ch. VII. We have proved that equation (1) repre-

sents an ellipse, a parabola, or a hyperbola, according as e< 1,

e = 1, or c > 1. In case of the ellipse and the hyperbola the
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constant c turned out to be the eccentricity e. We are led

then to give to the parabola an eccentric!ty
;

namely,

e = e = l.

Theorem. Tlie locus of a point ivhich moves so that its dis-

tance from a fixed point bears to its distance from a fixed line,

not passing through the fixed point, a given ratio e is an ellipse,

a parabola, or a hyperbola, according as e is less than, equal to,

or greater than unity. In every case the constant e equals the

eccentricity.

Since always e = e, we may suppress e in future work, and

use e exclusively. Thus equation (1) becomes

(2) (1 - e*)x ' + f' - 2 mx + m2 = 0.

The theorem furnishes a blanket definition for the ellipse,

parabola, and hyperbola, which might have been used instead

of the separate definitions which we have given. It should

be noted, however, that this blanket definition does not include

the circle. For, if we set e = in (2), the equation reduces to

(x-my+y2=0,

which represents merely the focus F : (m, 0).

The fact that the blanket definition does not yield a circle

as a special case in no way discredits the circle as the limiting

form of an ellipse when the eccentricity approaches zero,

Ch. VII, § 1. The reason that a circle cannot be defined in

the new manner is because it has no directrices. When the

eccentricity of an ellipse approaches zero, the major axis

remaining constant, the distance a/e of the directrices from

the center increases indefinitely, so that in the limit, when the

ellipse becomes a circle, the directrices have disappeared.*

* It is, of course, possible to obtain the circle as a limiting curve ap-

proached by ellipses defined in the new way. If the points F and A of

Fig. 12, Ch. VII, are held fast and m is allowed to increase indefinitely,

then it can be shown that e approaches zero and that a and b both approach

the fixed distance AF. Thus the variable ellipse approaches a circle as

its limit.
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8. Hyperbolas with Foci on the Axis of y. Conjugate

Hyperbolas. Let the student show that the equation of the

hyperbola whose foci are at the points (0, ± C) on the axis

of y and the difference of whose focal radii is 2B is

E- — UL
A* B*

where

-1,

C2 = A> + B\

The transverse axis of this hyperbola is the axis of y ; the

conjugate axis, the axis of x. The length of the major axis is

2B ; that of the minor axis, 2 A. The eccentricity is C/B and

the asymptotes have the equations,

£-£ =
A B

and £ +1 = 0.A^B
Conjugate Hyperbolas. The two hyperbolas,

a? 2/
2

-2-=bl and
a1 b-

have the same asymptotes. The transverse axis of each is the

conjugate axis of the other, and the major axis of each is the

minor axis of the other.

Taken together, the two

hyperbolas form what is

called a pair of conjugate

hyperbolas. The relation-

ship between them is per-

fect in its duality. We
say, then, that each is the

conjugate of the other.

The two hyperbolas to-

gether are tangent exter-

nally at their vertices to the rectangle of § 4 at the mid-points

of its sides. Moreover, all straight lines through the common
center O, except two, meet one hyperbola or the other in two

points, and the segment thus terminated is bisected at 0.

Fig. 13
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The student should compare these facts with the correspond-

ing ones concerning a single ellipse and the circumscribed

rectangle.

EXERCISES

1. Find the coordinates of the foci, the lengths of the axes,

the slopes of the asymptotes, and the value of the eccentricity

for each of the hyperbolas :

(tt) f~S = ~ 1; (C) 2/
2-^ = 4

'

(b) 5a2 -4^+20=0; (d) Sx^ - 2y* + 6 = 0.

Draw an accurate figure in each case.

2. What are the equations of the hyperbolas conjugate to

the hyperbolas of Ex. 1 ?

3. Find the equation of the hyperbola whose vertices are in

the points (0, ± 4) and whose eccentricity is -§-.

Ans. 4^-5^4-80 = 0.

4. Find the equation of the hyperbola the extremities of

whose minor axis are in the points (± 3, 0) and whose eccen-

tricity is J

.

5. Prove that the sum of the squares of the reciprocals of

the eccentricities of the two conjugate hyperbolas

9 16 ' 9 16

is equal to unity.

6. Prove the theorem of Ex. 5 for the general pair of conju-

gate hyperbolas.

7. Show that the foci of a pair of conjugate hyperbolas

lie on a circle.

9. Parametric Representation, It is possible to construct a

hyperbola, given its axes, AA' and BB', by a method much
like that of Ch. VII, § 10, for the ellipse.
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\P:ix,V)

Let the two circles, C and C", and the ray from 0, be drawn

as before. At the point L
draw the tangent to C", and

mark the point Q where the

ray cuts this line. At R draw

the tangent to C and mark the

point S where this tangent

cuts the axis of x.

The locus of the point

P : (x, y), in which the paral-

lel to the axis of x through

Q and the parallel to the

axis of y through S intersect, is the hyperbola.

For, OR = a, OL = b,

and x = OS = a sec cf>, y = LQ = b tan <£

Hence
x- = secd>,
a

^ = tan <£,

b

and since sec2
<f>
— tan2

<f>
— 1,

it follows that
tf_ £=i.
a2 &-'

Conversely, any point (x, y) whose coordinates satisfy this

equation is seen to lead to an angle <£, for which the above

formulas hold.

We thus obtain the following parametric representation of

the hyperbola :

x = a sec
<f>, y = b tan

<f>.

The circle C, constructed on the major axis of the hyperbola

as a diameter, is known as the auxiliary circle of the hyperbola,

and the angle <£ is called the eccentric angle.

EXERCISES

1. Carry out the construction described above for the cases

(a) a = 3 cm., 6 = 2 cm.
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(6) a = 3cm., b = 3 cm.

(c) a = 2 cm., 6 = 3 cm.

2. Obtain a parametric representation of the hyperbola

x2 _ t_ _ _ i
^42 £2

10. Conic Sections. The ellipse (inclusive of the circle), the

hyperbola, and the parabola are often called conic sections,

because they are the curves

in which a cone of revolution

is cut by planes.

Suppose a planeM cuts only

one nappe of the cone, as is

shown in the accompanying

drawing. Let a small sphere

be placed in the cone near 0,

tangent to this nappe along a

circle. It will not be large

enough to reach to the plane

M. Now let the sphere grow,

always remaining tangent to

the cone along a circle. It

will finally just reach the

plane. Mark the point of

tangency, F, of the plane M
with the sphere, and also the

circle of contact, C, of the

sphere with the cone.

As the sphere grows still larger, it cuts the plane M, but

finally passes beyond on the other side. In its last position, in

which it still meets M
}
it will be tangent to M. Let the point

of tangency be denoted by F', and the circle of contact of the

sphere with the cone by C.
Through an arbitrary point P of the curve of intersection of

M with the cone passes a generator OP of the cone ; let it cut

C in R and C in R'. Then RR'> being the slant height of

Fig. 15
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the frustum * cut from the cone by the planes of C and C-, is

of the same length, 2 a, for all points P.

Join P with F. Then PF and PR, being tangents from P
to the same sphere, are equal. Similarly, PF' and PR' are

equal. Hence

FP + F'P=RP+ R'P= RR',

or FP+F'P = 2a.

But this locus is by definition an ellipse with its foci

at F and F', and hence the proposition is proved for the case

that M cuts only one nappe, the intersection being a closed

curve.

If the plane M cuts both nappes, but does not pass through

0, it is a little harder to draw the figure, one sphere being

inscribed in the one nappe, the other, in the other nappe.

A similar study shows that here the difference between

FP arid F'P is equal to RR f

, and hence the locus is a

hyperbola.

The parabola corresponds to the case that M meets only one

nappe, but does not cut it in a closed curve. This case is

realized when M does not pass through and is parallel to a

generator of the cone.

Let L be a line which is perpendicular to the axis of the

cone in a point of the axis distinct from the vertex. As a

plane, M, rotates about L, it will cut from the cone all three

kinds of conies. This will still be true if we take, as L, any

line of space which does not pass through the vertex and is

not parallel to a generator.

11. Confocal Conies. Two conies are said to be confocal if

they have the same foci ; in the case of two parabolas, we de-

mand, further, that they have the same axis.

* No technical knowledge of Solid Geometry beyond the definitions of

the terras used (which can be found in any dictionary) is here needed.

On visualizing the figure, the truth of the statements regarding the space

relations becomes evident.
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Consider an ellipse and a hyperbola which are confocal.

They evidently intersect in four points.*

Let P be one of these points. Join P with F and F'.

Then FP and F'P are focal radii both of the ellipse and of the

hyperbola. Now, the tangent to a hyper-

bola at any point not a vertex bisects the

angle between the focal radii drawn to

that point, § 5 ; and the normal to an

ellipse at any point not on the transverse

axis bisects the angle between the focal

radii drawn to that point, Ch. VII, § 4.

It follows, then, that the tangent to

the hyperbola at P and the normal to the ellipse at this

point coincide. Hence the two curves intersect at right

angles, or orthogonally, as we say. We have thus proved the

following

Theorem. A pair of confocal conies, one of which is an el-

lipse and the other a hyperbola, cut each other orthogonally.

Confocal Parabolas. Consider two parabolas having the

same focus and the same axis. If both open out in the same

direction, they have no point in common. If, however, they

open out in opposite directions, they intersect in

two points which are symmetrically situated with

respect to the axis.

In the latter case, the parabolas intersect orthogo-

nally, as has already been proved analytically; cf.

Ch. VI, § 3, Ex. 10.

This result could have been forecast, as a conse- fig. 17

quence of the relations established in § 7. For, if

one focus, F, and the two corresponding directrices of a pair

of confocal conies, consisting of an ellipse and a hyperbola,

are held fast, and if the other focus is made to recede in-

definitely, each of the conies approaches a parabola. But the

* Let the student satisfy himself that two confocal ellipses do not in-

tersect, and that the same is true of two confocal hyperbolas.
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Fig. 18

conies always intersect orthogonally, and so the same will be

true of the limiting curves, the parabolas.

To obtain a prescribed pair of parabolas, like those described

above, as limiting curves, it is necessary merely to choose the

two confocal conies so that the directrices corresponding to F
are at the proper distances from F.

Mechanical Constructions. It is possible to draw with ease a

large number of confocal ellipses by the method set forth in Ch.

VII, § 1. Let thumb tacks be inserted at F
and F', but not pushed clear down. Let a

thread- be tied to the tack at F, passed round

the tack at F', and held fast at M. Then an

ellipse can be drawn with F and F ' as foci.

Now let the thread be unwound at F'

and drawn in or paid out slightly, so that

the length of the free thread between F and F' is changed.

On repeating the above construction, a second ellipse with

its foci at F and F' is obtained
; and so on.

There is an analogous construction for a hyperbola, which

has not yet been mentioned. Tie a thread to a pencil point,*

pass the thread round the pegs at F and

F' as shown, hold the free ends firmly

together at M, and, keeping the thread

taut by pressing on the pencil, allow M to

move. The pencil then obviously traces

out a hyperbola.

By pulling one end of the

thread in slightly at M, or by
paying it out, and then repeating the construction,

a new hyperbola with the same foci is obtained

;

and so on.

Parabolas. The accompanying figure suggests

a means for drawing a parabola mechanically.

* To keep the thread from slipping off, cut a groove in the lead, such

as would be obtained if the pencil were turned about its axis in a lathe

and the point of a chisel were held against the lead close to the wood.

Fig. 20
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A ruler, D, is held fast and a triangle, T, is allowed to slide

along the ruler. A thread is tied at F and Q, and a pencil

point, P, keeps the thread taut and pressed against the

triangle.

EXERCISES

1. Show that the conies,

^- +^=1 and £-£-1,24^8 4 12 '

are confocal.

2. Prove that the equation,

9+A " 5 + A '

represents an ellipse for eacn value of A greater than — 5 and

represents a hyperbola for each value of A between — 9 and
— 5. Show that all these ellipses and hyperbolas are confocal,

with the points (± 2, 0) as foci.

3. For what values of A. does the equation

a2 + A b2 + A
= 1,

where a and 6 are given positive constants such that a > b,

represent i) ellipses ? ii) hyperbolas ? Show that all these

conies are confocal.

4. Draw a set of confocal ellipses and hyperbolas.

5. Draw a set of confocal parabolas, all having the same

transverse axis, some opening in one direction, some in the

other.

EXERCISES ON CHAPTER VIII

1. The axes of a hyperbola which goes through the points

(1, 4), (— 2, 7) are the axes of coordinates. Find the equation

of the hyperbola. Ans. y
2 — 11a;2 = 5

2. Show that the hyperbolas defined by the equation

4:X2 -5y2 = c,
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where c is an arbitrary constant, not zero, all have the same

asymptotes.

3. How many hyperbolas are there with the lines

3a?2 -16^ =

as asymptotes ? Find an equation which represents them all.

Ans. 3 x 1 — 16 y
1 = c, c =£ 0.

4. What is the equation of all the rectangular hyperbolas

with the axes of coordinates as axes ?

5. A hyperbola with the lines 4^ — ^ = as asymptotes

goes through the point (1, 1). What is its equation ?

Ans. 4 x — y"1 = 3.

6. The asymptotes of a hyperbola go through the origin

and have slopes ± 2. The hyperbola goes through the point

(1, 3). Find its equation. Ans. 4 a;"
5 — y

2 = — 5.

7. The two hyperbolas of Exs. 5 and 6 have the same

asymptotes, but lie in the opposite pairs of regions into which

the plane is divided by the asymptotes. Show that the sum
of the squares of the reciprocals of their eccentricities equals

unity.

8. Prove that of the hyperbolas of Ex. 2 those for which

c is positive are all similar, and that this is true also of those

for which c is negative. If e is the common value of the ec-

centricity of the hyperbolas of the first set and e
f

is that of

the hyperbolas of the second set, show that

(1) I+ A=l.v }
e2 e'2

9. Prove that the relation (1) is valid for the eccentricities

of any two hyperbolas which have the same asymptotes but

lie in the opposite regions between the asymptotes.

10. Show that two hyperbolas which are related as those

described in the previous exercise have the same eccentricity

if and only if they are rectangular hyperbolas.
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11. A hyperbola with its center in the origin has the eccen*

tricity 2. Find the equations of the asymptotes, (a) if the

foci lie on the axis of x
; (6) if the foci lie on the axis of y.

Am. (a) 3^-^ = 0; (b) a- -3^ = 0.

12. What is the equation representing all the hyperbolas

which have their centers in the origin and eccentricity 2,

(a) if the foci lie on the axis of x ? (6) if the foci lie on the

axis of y ? Show that in either case the vertices lie midway
between the center and the foci.

13. Prove that the vertices of the hyperbola

a2 b*

subtend a right angle at each of the points (0, ± b) when and

only when the hyperbola is rectangular. What is the corre-

sponding theorem in the case of the ellipse?

14. The projections of a point P of a hyperbola on the

transverse and conjugate axes are P2 and P2 . The tangent at

P meets these axes in 2\ and T2. Show that OP1
• OTx

= a 2

and OP2
- OT2 = — b\ where is the center of the hyperbola

and a and b are the semi-axes.

15. Prove that the segment of a tangent to a hyperbola be-

tween the point of contact and a directrix subtends a right

angle at the corresponding focus.

16. The projection of a point P of a hyperbola on the

transverse axis is P
x
and the normal at P meets this axis at

Ni. Show that the ratio of the distances of the center from

iVi and Px equals the square of the eccentricity^

17. Prove that the line joining a point P of a hyperbola

with the center and the line through a focus perpendicular to

the tangent at P meet on a directrix.

18. Find the equation of the circle which is tangent to a

hyperbola at the upper ends of the two latera recta.

19. Let be the center, A a vertex, and F the adjacent

focus of a hyperbola. The tangent at a point P meets the
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transverse axis at T and the tangent at A meets OP at V.

Show that TV is parallel to AP.

20. Show that an asymptote, a directrix, and the line through

the corresponding focus perpendicular to the asymptote go

through a point.

21. A line through a focus F parallel to an asymptote meets

the hyperbola at P. Show that the tangent at P, the other

asymptote, and the line of the latus rectum through F meet in

a point.

22. Let F be a focus and D the corresponding directrix of

a hyperbola. A line through a point P of the hyperbola parallel

to an asymptote meets 1) in the point K. Prove that the tri-

angle FPK is isosceles.

Exercises 23-33. In proving the theorems in these exercises

it will, in general, be necessary to make actual use of the

equation expressing the fact that a certain point lies on the

hyperbola.

23. The tangent to a hyperbola at a point P meets the tan-

gent at one vertex in Q. Prove that the line joining the other

vertex to P is parallel to the line joining the center to Q,

24. Let F be a focus and D the corresponding directrix of a

hyperbola. Prove that the segment cut from D by the lines

joining the vertices with an arbitrary point on the hyperbola

subtends a right angle at F.

25. Prove that the product of the distances of the foci of a

hyperbola from a tangent is constant, i.e. independent of the

choice of the tangent.

26. Let A and A' be the vertices of a rectangular hyperbola

and let P and P' be two points of the hyperbola symmetric in

the transverse axis. Prove that AP is perpendicular to A'P'

and that AP' is perpendicular to A'P.

27. Show that the product of the focal radii to a point on a

rectangular hyperbola is equal to the square of the distance of

the point from the center.



152 ANALYTIC GEOMETRY

28. Prove that the angles subtended at the vertices of a

rectangular hyperbola by a chord parallel to the conjugate axis

are supplementary.

29. Prove that the product of the distances of an arbitrary

point on a hyperbola from the asymptotes is constant, i.e.

the same for every choice of the point.

30. A line through an arbitrary point P on a hyperbola

parallel to the conjugate axis meets the asymptotes in M and

JV. Show that the product of the segments in which P divides

MNis constant.

31. Prove that the segment of a tangent to a hyperbola cut

out by the asymptotes is bisected by the point of contact of

the tangent.

32. Show that the tangent to a hyperbola at an arbitrary point

forms with the asymptotes a triangle which has a constant area.

33. The tangent to a hyperbola at a point P meets the tan-

gents at the vertices in ifcf and AT. Prove that the circle on

MN as a diameter passes through the foci.

Loci

34. Find the locus of a point whose distance from a given

circle always equals its distance from a given point without

the circle. First give a geometric construction, with ruler and

compass, for points on the locus. Then find the equation of

the locus.

35. The base of a triangle is fixed and the product of the

tangents of the base angles is a negative constant. What is

the locus of the vertex ?

36. A line moves so that the area of the triangle which it

forms with two given perpendicular lines is constant. Find

the locus of the mid-point of the segment cut from it by these

lines.

Ans. Two conjugate rectangular hyperbolas, with the given

lines as asymptotes.
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37. Given a fixed line L and a fixed point A, not on L. A
point P moves so that its distance from L always equals the

distance AQ, where Q is the foot of the perpendicular dropped

from P on L. What is the locus of P?
38. What is the locus of the point P of the preceding exer-

cise, if the ratio of its distance from L to the distance AQ is

constant ?



CHAPTER IX

CERTAIN GENERAL METHODS

1. Tangents. Let it be required to find the tangent line to

a given curve at an arbitrary point.

In the case of the circle the tangent is perpendicular to the

radius drawn to the point of tangency. But this solution is

of so special a nature that it suggests no general method of

attack. A general method must be

based on a general property of tan-

gents, irrespective of the special curve

considered. Such a method is the

following. Let P be an arbitrary

point of a given curve, C, at which it

is desired to draw the tangent, T. Let

a second point, P', be chosen on 0,

and draw the secant, PP'. As P'

moves along O and approaches the

fixed point P as its limit, the secant rotates about P as a pivot

and approaches the tangent, T, as its limiting position. Thus

the tangent appears as the limit of the secant.

If, now, in a given case we can find an expression for the

slope of the secant, the limit approached by this expression

will give us the slope of the tangent. The slope of the tangent

to the curve at P we shall call, for the sake of brevity, the

slope of the curve at P.

Example 1. Find the slope of the curve

(1) y = x*

at a given point, P.

154
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Let the coordinates of P be

(*i, Vi) 5 those of P
,

(x', ?/'),

or (x\ + h, yi + k). Then

PQ = h, QP = fc,

and we have, for the slope of

the secant PP'. the expression

:

(2) W=|,
where r'

then,

(3)

£ QPP'. The slope of the tangent line, T, at P is,

k
tan t = lini tan r' = lini

p'±p /i=o 7i

where t= "%. QPT. The sign = is used to mean "approaches

us its limit." and the expression : lim tan r'. is read : " the
p'=p

limit of tan/, as P' approaches P."

Suppose, for example, that P is the" point (1, 1). Let us

compute k and tan r' for a few values of h. Here, xx
= l and

yx
= 1. If h = .1, then

a;' = a?! + ft = l-.l,

^= y1 +V=(ii)»=L21>

& = .21,

.1
and hence tan 2.1.

Next, let P' be the point for which

a;' = 1.01.

Then y' = 1.0201,

h = .01, k = .0201,

and hence
, , .0201 OAitan t' = —-— = 2.01.

Let the student work out one more case, taking x'= 1.001.

He will find that here k = .002001 and

tanr' = 2.001.
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These results can be presented conveniently in the form of

a table

:

* k
t

tanr' = £
h

.1 .21 2.1

.01 .0201 2.01

.001 .002001 2.001

The numbers in the last column appear to be approaching

nearer and nearer to the limit 2 ; in other words, the slope of

the curve in the point (1, 1) appears to be 2. Let us prove

that this is actually the case. Since the proof is just as simple

for an arbitrary point P, we will return to the general case.

The point P being a point of the curve (1), its coordinates

(xlf yj must satisfy that equation. Hence

(4) yx
= xx\

Similarly, for the point P' whose coordinates are (a?i + /i,

ft + *)

:

or

(5) yx + k = a?!2 + 2 xji + h*.

Subtracting (4) from (5), we get

:

k=2xlh + h2
.

Consequently, tanT' = -=2a;1 + fc.

h

Now let P' approach P; h will then approach 0, and we
shall have

But

lim tan t'= lim - = lim (2 xl -\-h).
p-=P fc=0 h h±Q

lim tan t'= tan t, and lim (2xi + h)=2 xx.

P'±P fcM)

Hence tanr == 2aji.
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We can say, then, that the slope of the curve (1), at an arbi-

trary point P : (xu yi) on it, is

\ = 2xv

If, in particular, P is the point (1, 1), the slope of the tan-

gent there is \ = 2 • 1 = 2, and thus the indication given by
the above table is seen to be borne out.

Example 2. Find the slope of the curve

a2

(6)
,-i

at an arbitrary point P : (xl9 y^) of the" curve.

Denote, as before, the coordinates of a second point, P', by

<xf = xi+ h, y' = yx + k.

Then, since P and P' lie on the curve,

a2

Vi=-

and yi + k =

Hence fc ==

#! + &

a2 a2

a?x + h Xi

Nothing is more natural than to reduce the right-hand side

of this equation to a common denominator. Thus

k= - alt

x1(x1 + h)

Consequently,

for, / * -<*2

tan t = -=
& «!(«! -f- h)

We are now ready to let P' approach P:

lim tan t' = lim
P'=P *=0 Xi(xx + ft)

The limit approached by the right-hand side is obviously

— a2/xl
2
, and so

tanr = -—

«

xx
2
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We have, then, as the final result : The slope of the curve (6),

at an arbitary point (xh y{) on it, is

x— «*.

Equation of the Tangent. Since the tangent to the curve (1),

y= x*,

at the point (1, 1) has the slope 2, its equation is

y — 1 = 2 (x - 1), or 2 x — y — 1 = 0.

Similarly, the equation of the tangent to the curve (1) at an

arbitrary point P : (xl9 yx) is

y-yA
= 2x1(x-x1),

or

y-y1 = 2x1x-2x1
2

.

This equation may be simplified by use of the equality,

Vi = *h
2
,

which says that the point P lies on the curve. For, if we re-

place the term 2#1
2 by its equal, 2ylf and then combine the

terms in y1} the equation becomes

y 4-2/i = 2 xxx.

This equation of the tangent is of the first degree in x and y,

as it should be. The quantities x1
and yx are the arbitrary,

but in any given case fixed, coordinates of P and are not

variables.

Equation of the Normal. The line through a point P of a

curve perpendicular to the tangent at P is known as the

normal to the curve at P.

Since the tangent to the curve y = x2 at the point (1, 1)

has the slope 2, the normal at this point has the slope — i

Consequently, the equation of the normal is

*/-l=- !(>-!), or b + 2#-3 = 0.
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EXERCISES

1. Determine the slope of the curve y = x* — x at the point

(3, 6). First make out a table like that under Example 1, and

hence infer the probable slope. Then take an arbitrary point

(#i> 2/i) on the curve and determine the actual slope at this

point by finding

lim—

•

a=bo h

2. The same for the curve Sy = Sx3 at the point (2, 3).

3. The same for the curve y = 2x2 — 3x + l at the point

(1, 0).

Find the slope of each of the following curves at an arbitrary

point P : (x1} y^. No preliminary study of a numerical case,

like that which gave rise to the table under Example 1, is

here required.

4. y = x*1 — 3 x + 1. Ans. A = 2 #! — 3*

5. y = 2x -x -4. 7. y = 4^ -2a;2 + 5.

6. y — a? — x. 8. y = jb
3
-f a,*- -f x + 1.

9. y = x3 +px-\- q. ^Ins. A = 3a;1
2 -fp.

10. y — x^ — o?1

. ^Ins. A = 4 a?!
3

.

11.
_ 1

V
X2

' .4ws. A = -

a?!
3

12.
a4

X*

13.
1

-4tts. A = — -.
(l-*i) 2

14.
3 a -4 ^ns \ _ 8

(3^i-4)2

15. y = ax" -\- bx -f- c. ^Ins. A = 2 axx + b.

16. y = ax3 + bx 1 4- ex + d.

17. y = xn
,

()l, a positive initeger) Aiis. A = nxf'K

18. y = cxn
.
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Find the equations of the tangents to the following curves

at the points specified. In each case reduce the equation ob-

tained to the simplest form.

19. The curve of Ex. 1 at the points (3, 6) ;
(xh y{).

Ans. 5x — y — 9 = 0; (2x
x
— l)x — y — x

1
2 =

20. The curve of Ex. 3 at the points (x1} yt) ; (1, 0).

21. The curve of Ex. 4 at the points (ieh y±) ; (— 1, 5)

22. The curve of Ex. 11 at the points (1, 1) ;
(xl} yx)

23. The curve of Ex. 17 at the point (x1} y^.

Ans. nxi~lx — y — (n — l)y
v
= 0.

24. The curve of Ex. 13 at the point whose abscissa is 2.

25. • The curve of Ex. 14 at the point whose abscissa is 4.

26. Find the equations of the normals to the curves of Exs.

21, 22 at the designated points.

2. Continuation. Implicit Equations. We have applied the

general method to curves whose equations are given in the

form : y = a simple expression in x. More precisely, this

" simple expression " has each time been a polynomial (or even

a monomial), or the ratio of two such expressions.

But even the simplest forms of the equations of the conies

are, as a rule, such that, if the equation be solved for y, radi-

cals will appear. In such cases, the following method of treat-

ment can be used with advantage.

The Parabola. Let it be required to find the slope of the

parabola

(1) y* = 2mx

at any point P : (x1} y^) on the curve.

We will treat first a numerical case, setting m = 2

:

(2) y2 = 4 x.

Since P is on the curve, we have

(3) 2/i
2 = 4a1.
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Since P' : (xx + h, yx + k) is also on the curve, we have :

or

(4) y{- + 2 Vlk + W< = 4^ -b 4ft.

Subtract (3) from (4) :

2^ + ^ = 4k

Divide this equation through by h, to obtain an equation for

tan t' = k/h :

2y1 -+k-=±, or 2^ tan r' + fc tan t' = 4.

Solve the latter equation for tan r'

:

4
tan t' =

2 Vl + k

We are now ready to let P' approach P as its limit. This

means that h and k both approach 0. We have, then,

lim tan t' = lim -,
p-=p a=o 2y1 + k

or

tan T = -^ = i.

It has been tacitly assumed that y1 ^= 0. If yx = 0, then

tanr' increases indefinitely as h, and with it k, approaches

zero. Thus the tangent line is seen to be perpendicular to the

axis of x at this point, as obviously is, in fact, the case, since

the point is the vertex of the parabola.

The student will now carry through by himself the corre-

sponding solution in the general case of equation (1). He
will arrive at the result : The slope \ of the parabola

y
l — 2mx

at an arbitrary point (x^, yx) of the curve is

(5) X = ™.
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The Ellipse. The treatment in the case of the ellipse,

is precisely similar. Writing (6), for convenience, in the

form

(7) frx+ ay^ = ab'\

we are led to the following equations *
:

(8) b%2 + a2
yx

2 = a252
;

b2(xL + h) 2 -\- a2^ + A;)2 = a2b2,'

or

(9) bW + a2
yx

2 + 2 fc^ft + 2 a2^ + 62
/*
2 +a2

fc
2 = a262.

Subtract (8) from (9)

:

2 &V1 + 2 a^fc + &2
/*
2 + a2k2 = 0.

Divide by h :

2 fc
2^ + 2 «22/!- + 62

/i + a2
Jc - = 0,

h h

or 2 62^ + 2 a2
2/i tan t' + bVi + a2& tan r' = 0.

Solve this equation for tan r'

:

tant
>__2M5L± ft».

2 a2
2/x + a2&

Now let P' approach P as its limit

:

lim tan t' = lim — •

p=p h±v 2a2
y1 + a2

ft

„ . 2b*Xi b2xLHence tan t = — ——-= —- •

2a2
Vl a2

yx

We have thus obtained the result : The slope \ of the ellipse

t +t^l
a2 b2

at an arbitrary one of its points (xx, yx) is

(10) x = -.^«

* The student will do well to paraphrase the text at this point with a

numerical case, — say, 4 x2 + 9 y2 — 36.
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The Hyperbola. The treatment is left to the student. The

result is as follows.

Tlie slope X of the hyperbola

a2 52
~

at an arbitrary one of its points (o&u y^) is

(11) X=^i.

Equation of the Tangent. Since the slope of the ellipse at

the point (a?l5 yx) is — b2xja2
yi, the equation of the tangent at

Oi, yi) is

or, after clearing of fractions and rearranging terms,

b2x^x + ah/fl = ft
2^2 + a2

?/i
2

.

If we divide both sides of this equation by a262, we have

afrp
|

.ViV = a?i
2

,
.Vi

2
.

a2 62 a2 6 2 '

But, since the point (a^, yx) lies on the ellipse, it follows that

a2 62

and the equation of the tangent becomes

*&
, y&--\

a2 b2

The equation of the tangent to the ellipse

^+ ^ = 1
a2 b2

at the point (xlt yi) is

(12)
' M+i*«lv ;

a2 62

In a similar manner let the student establish the equations

of the tangents to the hyperbola and the parabola.
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The tangent to the hyperbola

X2

a2 62

at the point (xh , 2/1) has the equation

(13)
xtx

~oJ 62

The tangent ilo the parabola

y
2 = 2mx

at the point (x1: 2/1) has the equation

(14) y$ = m(x + xx).

EXERCISES

Find the slope of each of the following six curves at an

arbitrary one of its points, applying each time the method

set forth in the text.

1. 2a2 4.3?/2 = 12. 3. i/
2 = 12 a.

2. x2 — 42/
2 = 4. 4. x2 —

2/
2 = a\

5. Ax2 4- By2 — C, where A, B, C are all positive.

6. y
2 = Ax + B, where A 4^ 0.

7. Find the slope of the parabola y
2 + 2 y = 6 a; at the point

3
(«i, 2/i)- -4ris. A. =——

.

2/1 + 1

8. What is the slope of the parabola of Ex. 7 at the origin?

Ans. 3.

9. Find the slope of the curve

x*-y2 -3x + 4y =
at the origin. Ans. X= f

.

Suggestion. First find the slope at an arbitrary point (xly 2/1).

Then substitute in the result the coordinates of the origin.

10. What angle does the curve

2x*-3y* + x-y + 1 =
make with a parallel to the axis of x at the point (1, 1) ?

Ans. 45°.
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11. Find the slope of the curve xy = a 2 at any point (xl9 yx)

by the method of the present paragraph, and show that your

result agrees with that of § 1, Example 2.

Find the equation of the tangent to each of the following

curves at the point designated, applying each time the method

of the text, Reduce the equation to its simplest form.

12. The curve of Ex. 1 at the point (a^, yx ).

Ans. 2 xLx + 3 yxy = 12.

13. The curve of Ex. 3 at the points (x1} y{) ; (3, — 6).

14. The curve of Ex. o at the point (xL , yx).

Ans. Axxx + Byiy = C.

15. The curve of Ex. 6 at the point (xu y^).

16. The curve of Ex. 7 at the points (x1} y{) ; (-J-,
1).

17. The curve of Ex. 9 at the origin.

18. Find the equations of the normals to the curves of Exs.

12, 13 at the points specified.

3. The Equation u + kv = Q. Consider the following ex-

ample.

The equations

(1) * +y-2 = Q,

(2) x-y = 0,

represent two straight lines intersecting

in the point (1, 1), as shown in Fig. 3.

What can we say concerning the curve *

(3) (x + y-2)+k(x-y)=0,
where 7c denotes a constant number ?

This curve is a straight line, since (3) is an equation of the

first degree in x and y. Suppose, now, that various different

values are given to fc. Then (3) represents various straight

lines in turn. What do all these lines have in common ?

* The word "curve" is used here in the sense common in analytic

geometry, to denote merely the " locus of the equation.' 1 Consequently
a curve in this sense is not necessarily crooked ; it may be a straight line.

Fig. 3
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Since the lines (1) and (2) intersect in the point (1, 1), the

coordinates of this point make the left-hand sides of equations

(1) and (2), namely, the expressions,

x -f y — 2 and x — y,

vanish. Consequently, they always make the left-hand side

of equation (3) vanish. In other words, equation (3) is satisfied

by the coordinates of the point of intersection of the lines (1) and

(2), no matter what value k has. This means that all the

straight lines represented by (3) go through the point of inter-

section of the lines (1) and (2).

The result can be restated in the following form. Let the

single letter u stand for the whole expression x -f y — 2

:

u = x+y-2,
the sign = meaning identically equal, i.e. equal, no matter what

values x and y have. Similarly, let v stand for x — y

:

v = x — y.

Then (3) takes on the form

:

(4) u + kv = 0.

We now restate our result.

Ifu = and v = are the equations of tivo intersecting straight

lines, then the equation

u + kv = Q

represents a straight line which goes through the point of inter-

section of the two given lines.

By giving to k a suitable value, u -f- kv = can be made to

represent any desired line through the point of intersection

(
xh yd of the given lines, with the sole exception of the line

v = 0. For, let L be the desired line, and let (x2 , y2) be a

point of L distinct from (x1} yx). Then, on substituting for x

and y the values x2 and y2 in the equation u + kv = 0, we ob-

tain an equation, in which k is the unknown. This equation

can be solved for k, since v does not vanish for the point

O2, 2/2).
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Example. Find the equation of the line L which goes

through the point of intersection of the lines (1) and (2) and

cuts the axis of y in the point (0, — 4).

The required line, L, is one of the lines (3) ; i.e. for a suit-

able value of k, (3) will represent L. To find this value of k,

we demand that (3) contain the given point (0, —4) of L.

We have, then, setting x — and y = — 4 in (3)

:

(0-4-2)+ &(0 + 4)=0 or fc = f.

Consequently, the equation of the line L is

x + y — 2 + f (x — y)= or 5x — y — 4 = 0.

That the line represented by the latter equation does actually

go through the points (1, 1) and (0, — 4) can be verified

directly.

The principle which has been set forth for two straight lines

evidently applies to any two intersecting curves whatever, so

that we are now in a position to state the following general

theorem.

Theorem 1. Let u = and v = be the equations of any

tivo intersecting curves. TJien the equation

u + kv = 0, k =£ 0,

represents, in general,* a curve ivhich passes through all the

points of intersection of the two given curves, and has )io other

point in common with either of them.

The last statement in the theorem is new. To prove it,

we have but to note that, if the coordinates of a point P satisfy

the equation u + kv = and also, for example, v = 0, they

must satisfy the equation u = ; that is, if P is a point on the

curve u + kv = 0, which lies on one of the given curves, it

lies also on the other and so is a point of intersection of the

two.

* It may happen in special cases that the locus u + kv = reduces to

a point, as when, for example,

U = 2 X2 + 2^ _ x, U = X2 + 2/2 _ x
,

fe = — 1,
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Suppose, now, that the equations u = and v = represent

two curves which have no point of intersection. It follows,

then, from the argument just given, that the curve

u + kv = k^=0

has no point in common with either of the given curves. But
it may happen, in this case, that there are no points at all

whose coordinates satisfy the equation u + kv = 0. Thus, if

u = x2
-f y

2 — 1,

v = x2 + y
2 — 4,

and k = — 1, we have
u + kv = 3,

and there are no points whose coordinates satisfy the equation

3 = 0.

The general result can be stated as

Theorem 2. Let u = and v = be the equations of two

non-intersecting curves. Then the equation

u-\-kv — 0, k=£0,

represents, in general, a curve not meeting either of the two given

curves. In particular, it may happen that the equation has no

locus.*

In the special case that u and v are linear expressions in

x and y, it is possible to say more.

Ifu = and v = are the equations of two parallel straight

lines, the equation

u + kv = 0, k^=0,

represents, in general, a straight line parallel to the given lines.

For a single value of k, the equation has no locus.

Thus, if the parallel lines are

u = x-\-y = 0, v = x + y + l = 0,

the equation

(5) u + kv =(1 + k)x +(1 + k)y + k =
* It may happen, also, that the equation represents just one point, as

when, for example,

u = x2 + ?y
2 — 2. v = x* + y2 — 1. k = — 2,
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lias no locus when k = — 1, but otherwise it represents a line,

of slope — 1. parallel to the given lines. In fact, it yields all

the lines of slope — 1, except the line v = 0, since, if we re-

write it in the form,

the quantity k/(l -+- k) may be made to take on any value, ex

cept 1, by suitably choosing k.

Pencils of Curves. All the lines through a point, or all the

parallel lines with a given slope, form what is called a pencil

of lines. Equation (5) represents, when k is considered as an

arbitrary constant, all the lines of slope — 1, except the line

in this case, then, u -f kv = and v = together represent all

the lines of slope — 1, that is, a pencil ofparallel lines.

Similarly, u + kv = 0, when u = and v = are the lines

(1) and (2), yields all the lines through the point (1, 1),

except the line (2) ; hence u + kv = and v — together

represent all the lines through the point (1, 1),

—

a pencil of

intersecting lines.

Thus, if u = and v = are any two lines, the equations

(6) u + kv = and v =

together represent a pencil of lines.

If we set k = m/l in u -{-kv = and multiply by I, the re-

sulting equation

(7) hi + mv =

is equivalent to the equation a -f kv — when I ^ 0, and when

1 = (m j= 0), it becomes v = 0. Consequently, the two equa-

tions (6) may be replaced by the single equation (7).

The pencil of lines through the point (1, 1), for example,

may now be given by the single equation

l(x + y-2)+m(x-y)=0,
where I and m have arbitrary values, not both zero.
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In general, if u = and v = are any two curves, all the

curves represented by the equation

lu + mv — 0,

where I and m have arbitrary values, not both zero, form what
is called a pencil of curves.

Applications. Example 1. Let

u = x2 + y -f ax -f fa/ + c = 0,

w = a^ + ?/< + a'a; + b'y + c' = 0,

be the equations of any two circles which cut each other.

Then the equation

u — v=(a — a')x+(b - V)y+(c— c')=0

represents a curve which passes through the two points of

intersection of the circles. But this equation, being linear,

represents a straight line, and is, therefore, the equation of

the common chord of the circles.

The foregoing proof is open to the criticism that conceivably

we might have
a-a' = 0, b-b' = 0,

and then the equation u — v = would not represent a straight

line. But in that case the circles would be concentric, and we
have demanded that they cut each

other.

Example 2. We can now proye

the following theorem : Given three

circles, each pair of which intersect.

Then their three common chords

pass through a point, or are parallel.

Let two of the three given circles

be those of Example 1, and let the

equation of the third circle be

Wy=0

iv = a2 + if + a"x + b"y -f c" = 0.
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Then the equations of the three common chords can be written

in the form

:

u — v = 0, v — w = 0, w — u — 0.

Let

Ux = V — W, Vx = W — U, Wx = U — V.

We observe that the equation,

(8) Ux 4- Vx 4- Wx = or — wx = ux + v1}

holds identically for all values of x and y. Consequently, the

line Wx = is the same line as

ux 4 Vi = 0,

and therefore it passes through the point of intersection of

ux = and v x = 0, or, if these lines are parallel, is parallel to

them. Hence the theorem is proved.

The above proof is a striking example of a powerful method

of Modern Geometry known as the Method of Abridged Nota-

tion* By means of this method many theorems, the proofs of

which would otherwise be intricate, or for whose proof no

method of attack is readily discerned, can be established with

great ease.

EXERCISES

1. Find the equation of the straight line which passes

through the origin and the point of intersection of the lines

2z-32/-2 = 0, 5oj + 2 y + 1 = 0.

Arts. 12x + y = 0.

2. Find the equation of the straight line which passes

through the point (—1, 2) and meets the lines

x+ y= 0, # + 2/4-3 = 0.

at their point of intersection.

* The first general development of this method was given by the

geometer, Julius Plucker, in his Analytisch-geometrische Entwicklungen

of 1828 and 1831.
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3. Find the equation of the straight line which passes

through the point of intersection of the lines -

5x-2y-3 = 0, 4a; + ly - 11 =

and is parallel to the axis of y.

4. Find the equation of the straight line which passes

through the point of intersection of the lines given in Ex. 3

and makes an angle of 45° with the axis of x.

5. Find the equation of the straight line which passes

through the point of intersection of the lines of Ex. 1 and is

perpendicular to the first of the lines given in Ex. 3.

Ans. 3$x + 95y + 58 = 0.

6. The same, if the line is to be parallel instead of per-

pendicular.

7. Find the equation of the common chord of the parabolas

f- -2y + x = 0, 2/2 + 2x -y = 0.

Ans. x + y = Q.

8. The same for the parabolas
t

2x"-5x + 2y = 3,

3a;- + 7a; — 9?/ = 4.

9. Write the equation of the pencil of curves determined

by the two curves (a) of Ex. 1; (b) of Ex. 3; (c) of Ex. 7.

10. What is the equation of the pencil of circles determined

by the two circles

x<l + y
2 -2x-l = 0,

& + y
2 + 4a - 1 = ?

Draw a figure showing the pencil. Find the equation of that

circle of the pencil which goes through the point (2, 4).

11. Find the equation of the pencil of parallel lines (a) of

slope 1 : (6) of slope — 3
;

(c) of slope Aq.

Ans. (a) y = x+k.

12. Find the equation of the pencil of lines through (a)

the point (0, 0) ; (6) the point (3, 2) ;
(c) the point (0, b)

;

(d) the point (xq, y ). Ans. (a) lx + my = 0.
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4. The Equation uv = 0. Consider, for example, the equa-

tion

(1) x2 -y2 = 0.

Since x2 — y
2 == (x - y) (x + y),

it is clear that equation (1) will be satisfied

(a) if (x, y) lies on the line

(2) *-2/ = 0;

(6) if (x, y) lies on the line

(3) z + 2/ = 0;

and in no other case. Equation (1), therefore, is equivalent to

the two equations (2) and (3) taken together, and it represents,

therefore, the two right lines (2) and (3).

It is clear from this example that we can generalize and

say:

Theorem. The equation

uv =
represents those points (x, y) ichich lie on each of the two curves,

u = 0, v = 0,

and no others.

It follows as an immediate consequence of the theorem that

the equation uvw ... = Q>

whose left-hand member is the product of any number of

factors, represents the totality of curves corresponding to the

individual factors, when these are successively set equal to zero.

Example. Consider the equation,

x*-y* = 0.

Here,*

*• - y* =(x* - y
2
)
(af- + y

2
)= (x -y)(z + y) (x2 + y

2
).

* It is true that the following equation is an identity, and so the sign

= instead of = might be expected. The use of the sign = for an identical

equation is not, however, considered obligatory, the sign = being used

when it is clear that the equation is an identity, so that the fact does

not require special emphasis.
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The given equation is, therefore, equivalent to the three equa-

x-y = 0, x + y = 0, a? + ^= P.

The first two of these equations represent right lines. The

third is satisfied by the coordinates of a single point, the

origin. Since this point lies on the right lines, the third

equation contributes nothing new to the locus.

EXERCISES

What are the loci of the following equations ?

3. 2xi + 3xy-2y2 = 0. 4. xy + x + 2y + 2 = 0.

5. x"1

-f xy — '2x — 2y = 0. 6. x3 -f xy2 = x.

7. 3x*y-2xy = 0. 8. xA - y* - 2x2 + 2y* = Q.

9. (x + y — 1) (x2 + $^)= 0. ^r*s. The line whose inter-

cepts on the axes are both 1, and the origin.

io. (*+aflj(«p+y + i)=<ji

11. (» + y)t(a-l)*+ y»]=a

12. a;
3 + x

n

y — &?/
2 — ?/

3 = 0.

Find, in each of the following exercises, a single equation

whose locus is the same as that of the given systems of equa-

tions.

13. a;-2 = 0, y — 4 = 0.

14. x = 2, y = 4.

15. aj + y — 2 = 0, x-y + 2 = <\

16. x—3y=5, 4<c + 3 = 0.

.„ x y x y
17. -= |, - = -f-a o a b

5. Tangents with a Given Slope. Discriminant of a Quad

ratic Equation. From elementary algebra we know that the

roots of the quadratic equation
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(1)

are

Ax2 + Bx + = 0,

1 2A^2A

A^O,

X =
2A 2A

JL-VB2 -4;Aa

From these formulas the truth of the following theorem at

once becomes apparent.

Theorem 1. The roots of the quadratic equation (1) are

equal if and only if

B2 -±AC=0.

The quantity B 2 — 4AC is known as the discriminant of the

quadratic equation (1).

By means of the theorem we shall solve the following prob-

lem.

Problem. Let it be required to find the equation of the

tangent to the parabola

(2) y = 6x,

which is of slope -|-.

Let I be a line of slope £-.

which meets the parabola in

two points, P1
and P2 . If we

allow L to move parallel to

itself toward the tangent, T,

the points Px and P2 will move
along the curve toward P, the

point of tangency of T; and

if L approach T as its limit, the points Px and P2 will approach

the one point P as their limit.

It is clear that these considerations are valid for any conic.

Accordingly, we may state the following theorem.

Theorem 2. A line which meets a conic intersects it in

general in two points. If these two points approach coincidence

Fig. 5
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in a single point, the limiting position of the line is a tangent to

the conic*

In applying Theorem 2 to the problem in hand, let us denote

the intercept of the tangent T on the axis of y by
ft.

The
equation of T is, then,

(3) y = -lx + ft.

The coordinates of the point P, in which T is tangent to the

parabola, are obtained by solving equations (2) and (3) simul-

taneously. Substituting in (2) the value of y given by (3),

we have

or

(4) aj2 + 4G8-6)aj + 4£2 = 0.

The roots of equation (4) are equal, since they are both the

abscissa of P. Accordingly, by Theorem 1, the discriminant

of (4) is zero. Hence

16 (ft
- 6)

2- 16^ = 0, or - 120 + 36 = 0.

Thus ft
= 3, and the tangent to the parabola (2) whose slope

is \ has the equation

(5) a?-2y + 6 = 0.

If in (4) we set ft
= 3, the resulting equation,

xi- 12 x +36 = 0,

has equal roots, as it should. The common value is x — 6, and

the corresponding value of y, from (2), is y = 6. The coordi-

nates of the point of tangency, P, are, then, (6, 6).

Second Method. We proceed now to give a second method

of solution for the type of problem just discussed. Let the

conic be the ellipse

(6) 4tf + y» = 6,

and let the given slope be 4.

* A tangent to a conic might then be defined as the limiting position

of a line having two points of intersection with the conic, when these

points approach coincidence in a single point ; this is a generalization of
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It is evident from the figure that there are two tangents of

slope 4 to the ellipse. Let the intercept on the axis of y of

one of the tangents be
ft.

The equation of

this tangent is then

(7) y = ±x+p.
Our problem now is to determine the value

of
ft.

To this end, let the coordinates of the

point of contact of the tangent be (a^, y±).

Then a second equation of the tangent is,

by (12), §2,

(8) ±xxx + yxy = 5.

Since equations (7) and (8), which we
rewrite as

±x-y + ft
= 0,

4tx& + y$ — 5 = 0,

represent the same line, it follows, from Ch. II, § 10, Th. 5,

that

4ag = 2/i _ -5
4- -1

ft

From the equality of the first and third ratios we have

5

Since the second and third ratios are equal,

5

Fig. 6

(9) z,=

(10) 2/i
=
P

Furthermore, the point (xi, y{) lies on the ellipse and so the

values of x1 and yx ,
given by (9) and (10), satisfy equation (6).

Accordingly,

100
,
25 K 25 -=5, or —= 1.

Hence ft has the value 5 or — 5.

the definition of § 1. A tangent cannot be defined as a line meeting the

conic in a single point, for there are lines of this character which are not

tangents, viz., a line parallel to the axis of a parabola, or to an asymptote

of a hyperbola.
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Substituting these values of fi in turn in (7), we obtain

4sc — y + 5 = 0, 4# — y — 5 = 0,

as the equations of the two tangents of slope 4 to the ellipse

(6). From equations (9) and (10) it follows that the points of

contact of these tangents are, respectively, (—1, 1) and

(i- - i).

Both the methods described in this paragraph are general

in application. For the usual type of problem met with in a

first course in Analytic Geometry either method may be used

with facility. It is, however, to be noted that the second

method presupposes that the equation of the tangent to the

curve at an arbitrary point on the curve is known, whereas

the first does not. Accordingly, in case a curve is given, for

which the general equation of the tangent is not known, — for

example, the parabola, y =3 a?
2 — 2a? + 1, — the first method

will be shorter to apply.

EXERCISES

Determine in each of the following cases how many tan-

gents there are to the given conic with the given slope. Find

the equations of the tangents and the coordinates of the points

of tangency. Use both methods in Exs. 1, 2, 3, checking the

results of one by those of the other.

Conic Slope

1. afi + tf = 5, 2.

jLns.
\2x-
\2x-

-y — 5 = 0, tangent at (2, — 1),

-y -{-5 = 0, tangent at (—2, 1).

2. tf = 3x, f
3. 2^ + ^ = 11, -i
4. aj

2 + 82/ = 0, 2.

5. 4^-2/2 = 20, 3.

6. %'* + f + 2x = 0,
i

7. 6y?-5x = 0, 1^X 3'
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8. What are the equations of the tangents to the circle

which are parallel to the line Sx — ?/ + 5 = ?

9. What is the equation of the tangent to the ellipse

Ax2 + oy2 = 20,

which is perpendicular to the line x + 3y — 3 = and has a

positive intercept on the axis of y ?

10. Find the equation of the tangent to the parabola

y = 3x^ — 2x + 1,

which is perpendicular to the line x -f- Ay + 3 = 0.

Arts. 4 x — y — * = 0.

11. Make clear geometrically that, no matter what direction

is chosen, there are always two tangents to a given ellipse,

which have that direction.

12. How many tangents are there to the parabola y — 2 rase,

which have the slope 0? State a general theorem relating

to the number of tangents to a parabola which have a given

slope.

13. Are there any tangents of slope 3 to the hyperbola

4z2 -y2 = 5?

If so, what are their equations ?

14. The preceding exercise, if the given slope is (a) 1;

(6) 2. Give reasons for your answers.

6. General Formulas for Tangents with a Given Slope.

Consider first the hyperbola

(i) t-yl =1 .

Before attempting to find a general formula for the equations

of the tangents to the hyperbola, which have a given slope, A,

we shall do well to ask if such tangents exist. In answer to

this question we state the following theorem.
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Theorem. All the tangents to the hyperbola (1) are steeper

than the asymptotes. Their slopes A all satisfy the inequality

(2) X|> or A2 >-

Conversely, if A satisfies (2), there are two tangents of slope A

to (1). If9
however, \2 <b2/a?, there are no tangents of slope A

«o(i).

To prove the theorem, let a point P, starting from the vertex

A, trace the upper half of the right-hand branch of (1). Then

the tangent, T, at P, starting from

the vertical position at A, turns

continuously in one direction, and,

as Precedes indefinitely, approaches

the asymptote S as its limit. In

other words, the slope, A, of T
decreases continuously through all

positive values greater than the

slope, b/a, of S, and approaches b/a

as its limit.* Consequently, A is always greater than b/a:

Fig. 7

a

* The geometrical evidence of this is convincing, but not conclusive.

To clinch it, we give the following analytical proof : If the coordinates

of P are (x, y), the slope \ of T is, by (11), § 2,

According to Ch. VIH, § 4, eq. (3),
V b

Vt-S
Hence x=*.

J

°a/i--

When P traces the upper half of the right-hand branch of (1) and re-

cedes indefinitely, x increases continuously from the value a through all

values greater than a. Then a2/x2 decreases continuously from 1 and

approaches as its limit ; and 1 — a2/x2
, and hence v'l — a2/x2

,
in-
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If P now traces the lower half of the right-hand branch, A

is negative, and always :

-x> b-
a

These two inequalities can be combined into the single in-

equality (2). Thus (2) is satisfied by the slope A of every tan-

gent to the right-hand branch of (1), and hence also, because

of the symmetry of the curve, by the slope A of every tangent

to the left-hand branch.

From the reasoning given in the first case, when P traces

the upper half of the right-hand branch of (1), it follows, not

only that A > b/a, but also that A takes on every value greater

than b/a. Hence, if a value of A, greater than b/a, is arbi-

trarily chosen, there is surely at least one tangent of this

slope A to (1), and consequently, because of the symmetry of

the curve, there are actually two. Similarly, if a value of A

less than — b/a is given.

To find the equations of the two tangents of slope A to (1),

in the case that A does satisfy (2), we apply the first of the

two methods of § 5. Let the equation of one of the tan-

gents be

(3) y = \x + /3,

where (3 is to be determined. Proceeding to solve (1) and (3)

simultaneously, we substitute for y in (1) its value as given by

(3) and obtain the equation,

or

(4) (&« _ rfxiygfi _ 2 a:p\x - a\W + &)= 0.

The roots of equation (4) are both equal to the abscissa of the

creases continuously from and approaches 1 as its limit. Conse-

quently, the reciprocal, 1/Vl — a2/x2
, of VI — a2/x2 decreases continu-

ously through all positive values greater than 1 and approaches 1 as its

limit. Hence, finally, \ decreases continuously through all positive values

greater than b/a and approaches b/a as its limit, q. e. d.
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point of contact of the tangent (3), and hence the discriminant

of (4) must vanish. We have, then,

4 a*/3W + 4a (&'- + /? )
(b - cW) = 0,

or, simplifying,

(5) £2 = a2*2 - 62
.

Hence £ has either of the values

± Va2A2 — 52
,

and the equations of the two tangents, written together, are

(6) • y = \x ± Va 'A 2 — b

\

Since A satisfies (2), or the equivalent inequality cPX? — V- > 0,

the quantity under the radical is positive and so has a square

root.* We have thus obtained the following result.

Tlie equations of the tangents to the hyperbola (1), which have

the given slope A, where A satisfies the inequality (2), are given

by (6).

Let the student deduce the following results, using either of

the two methods of § 5.

The equations of the tangents to the ellipse

(7) £+£=1,v }
a? ft

2

which have an arbitrarily given slope A, are

(8) y = \x± Va !A? + bl

The equation of the tangent to the parabola

(9) y
2 = 2mx,

which has a given slope A, not 0, is

(10) y = *x +~
*If we take a value of X, for which X2 < 62/a2 ,

" then a2X2 - 62 is

negative and has no square root. Consequently, there are no tangents

with this slope, as the theorem states. Finally, if \ = ±b/a, then

a2\2 _ f)i — o
5
and (4) is not a quadratic equation.
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Condition that a Line be Tangent to a Conic. The two

methods used to find the tangent to a conic with a given slope

apply equally well to the problem of determining the condi-

tion that an arbitrary line be tangent to a given conic. In

fact, in finding the equations of the tangents of slope X to the

hyperbola (1), we have at the same time shown that the con-

dition that the line

(11) y = Xx + ft .

where u:e now consider X and /? both arbitrary, be tangent to the

hyperbola (1), is that X and /? satisfy the equation (5) :

Similarly, the work of deriving formula (8) or (10) involves

finding the condition that the line (11) be tangent to the ellipse

(7) or the parabola (9).

Example. Is the line 3x — 2 ?/ -h 5 = tangent to the hyper-

bola a- -4^= 4?

It is, if, when we write the equations of the line and the

hyperbola in the forms (11) and (1), the values which we
obtain for X, ft a\ and 5?

, namely, f, f, 4, and 1, satisfy (5).

It is seen that they do not, and hence the line is not tangent

to the hyperbola.

EXERCISES

1. Derive formula (8) and at the same time show that the

condition that the line (11), where now A. and ft are both arbi-

trary, be tangent to the ellipse (7) is that X and /3 satisfy the

equation

(12) ft = a2A2 + V.

2. Show that the line (11) is tangent to the parabola (9) if

and only if

(13) 2 X/3 = m.

Hence prove the validity of formula (10).
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3. By direct application of the methods of the text, show
that the condition that the line (11) be tangent to the circle

(14) xi+tf^a?

is that

(15) /^ = a2 (l + A*).

4. Using formulas (6), (8), and (10), find the equations of

the tangents which are required in Exs. 1, 2, 3, 5, and 7 of § 5.

5. Has the hyperbola 9 a*-— 4?/2 = 36 any tangents whose

inclination to the axis of x is 60° ? Whose inclination is 45° ?

If so, find their equations.

6. Eind the equations of the tangents to the parabola

y
2 = 8x, one of which is parallel to and the other perpendicu-

lar to the line 3&* — 2^ + 5 = 0. Show that these tangents

intersect on the directrix.

7. Prove that any two perpendicular tangents to a parabola

intersect on the directrix.

In each of the following exercises determine whether the

given line is tangent to the given conic. If it is, find the

coordinates of the point of contact.

Conic Line

8. 2x"< + 3y'l = 5, 2x-Sy-5 = 0.

9.if = 2x, a*-f-4?/ + 8 = 0.

10. 3a*<-5^ = 7, 6a -5?/ -8 = 0.

In each of the following cases the equation of the given line

contains an arbitrary constant. Eind the value or values of

this constant, if any exist, for which the line is tangent to the

given conic.

Conic Line

11. a*
2 + 3^ = 4, x — 3?/ + c = 0. Ans. c = ±4.

12. x*- ?/- = 3, 2a* + <fy-3 = 0.

13. 5?/ = 3a*, 7cx-10y + 15 = 0.

14. 4 x* — 3 y
2 = 1, x -f 2 y -f k = 0.
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P:(-l,2)

15. Is the line x + y = 1 tangent to the parabola y = x — x2 ?

16. Show that the lines 3# ± y + 10 = are common tan-

gents of the circle a;
1

-f- y
1 = 10 and the parabola y = 120 a;.

17. Find the equations of the common tangents of the

parabola y
2 = 4V2# and the ellipse x 1 + 2y2 = 4.

Ans. V2a;± 22/ + 4 = 0.

7. Tangents to a Conic from an External Point. Given a

point P external to a conic, that is, lying on the convex side of

the curve. From P it is possible, in general, to draw two

tangents to the conic. It is required

to find the equations of these tan-

gents.

Let the conic be the ellipse

(1) tf + 2^ = 3

and let P be the point (— 1, 2). We
find the equations of the two tangents

drawn from P to the ellipse by find-

ing first the coordinates of the

points of tangency. Let Px be the

point of tangency of one of the tangents, and let the coordi-

nates of Pl5 which are as yet unknown, be (a^, y^). The
equation of this tangent is then, by (12), § 2,

(2) a*r + 2W = 3.

There are two conditions on the point P1? to serve as a means

of determining the values of xx and yx . In the first place, the

tangent (2) at Px
must go through the point (— 1, 2) ; hence

(3) -^ + 4^= 3.

Secondly, the point Px lies on the ellipse (1) ; that is,

(4) ^ + 2^ = 3.

Equations (3) and (4) are two simultaneous equations in the

unknowns a^, yv If we solve (3) for x1 :

(5) ^ = 4^-3,

Fig. 8
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and substitute its value in (4), we obtain, on simplification, the

following equation for y1
:

(6) 32^-4^ + 1 = 0.

The roots of this equation are yx
= 1 and yx

= \ ; the corre-

sponding values of xx are, from (5), 1 and —
J. Hence (xh yx)

= (1, 1) and (x1} yi)=(— -J,
i) are the solutions of (3) and (4).

The coordinates of the points of tangency are, therefore,

(1, 1) and (— -§-, £). Substituting the coordinates of each point

in turn for xx yx in (2) and simplifying the results, we obtain,

as the equations of the two tangents,

(7) a + 22/-3 = and 5x- 2y + 9 = 0.

The method used in this example is universal in its applica-

tion, not only to conies, but to other curves as well. It should

be noted, however, that the equation corresponding to (6) does

not, in general, have rational, that is, fractional or integral,

roots. Usually its roots involve radicals and hence so do the

final equations of the tangents. If one were dealing with an

arbitrary point P external to an arbitrary conic, for example,

the ellipse

these radicals would be complicated. Accordingly, we make no

attempt to set up general formulas for the tangents to a given

conic from an external point. We have expounded a method

which is applicable in all cases, and this is the purpose we set

out to achieve.

Second Method. We give briefly an alternative method of

finding the equations of the tangents from the point (— 1, 2) to

the ellipse (1).

Suppose one of the tangents is the line

(8) -y = Aa> + j8.

Since it is a tangent to (1), we have, according to § 6, Ex. 1,

20 , = 6A.2 +-3.
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Since it contains the point (—1, 2),

2=-A+
i
8.

If we solve these equations in A and /? simultaneously, we find

that A. = — i or -| and that ft
= -| or f. Substituting these pairs

of values for A and (3 in turn in (8) and simplifying the results,

we obtain the equations (7).

EXERCISES

1. Make clear geometrically that from a point external to

an ellipse or a parabola there can always be drawn just two

tangents to the curve.

2. How many tangents can be drawn to a hyperbola from

its center ? From a point on an asymptote, not the center ?

From any other external point ? Summarize your answers in

the form of a theorem.

3. Let P be a point external to a hyperbola from which two

tangents can be drawn to the curve. How must the position of

P be restricted, if the two tangents are drawn to the same

branch of the hyperbola? To different branches?

4. The point (2, 0) is a point internal to the hyperbola

x l — 2#2 = 2. Prove analytically that no tangent can be

drawn from it to the curve.

In each of the following exercises determine how many tan-

gents there are from the point to the conic, and when there are

tangents, find their equations. Use the first method.

a*. {Z
+29-B=\

{
2x-y-5 = 0.

Conic Point

5. x* + tf = 5, (3,1). .

6. a2— 3^ = 4, (b ~ 1).

7. a,* -2^ = 2, (1,-2).

8. 4^-9?/2 = 36, (4, 1).

9. ^2— 4aj = 0, (4, 5).

10. a;--42/2 = 4, (2, 1).
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11. x2 -8y = 0, (3,2).

12. 2^ -3^ = -10, (~2,1).

13. x2 + y
2 -4:X-y = 0, (5,2).

14. ^ + 2/
2 = 25, (-1,7).

15. Work Exercises 5-10 by the second method.

16. Show, by use of the second method, that the tangents

from the point (2, 3) to the ellipse 4 a;
2 + 9y2 = 36 are perpen-

dicular.

EXERCISES ON CHAPTER IX

1. Prove that the slope of the conic

(1 - e2)x2+ y
2 -2mx + m2 =

at the point (xlf yi) is

X — _ (I ~ e2)xi — m
,

Hence show that the equation of the tangent at (x1} yx) is

(1 — e°)x& + y$ — m (x + a^)+ m2 = 0.

2. Show that the slope of the curve

Ax2 + Bxy + Cy2 + Dx + Ey + F=
at the point (xly y±) is

A= 2^ +^ + D
Bxl + 2Gyl -^E'

Then prove that the equation of the tangent at (xh ?/i) is

-A*i* + f (2/i* + *#)+ Q/i2/ + f (* + *i)+ |(2/ + 2/i) + F= 0.

3. The following equations contain arbitrary constants.

What does each represent ?

(a) 2/ = Aa + 3;

Arts. All the lines through (0, 3) except x = 0.

(6) 3aa + 22/ + a-3:=0;
(c) 7a5 + 52/ — c + 3 = 0;

(d) (2a + 5)a+ (7a-3)?/ = 9a + 2;
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(e) te+(2/ + ra)?/-3ra = 0;

(/) (22 + 3 m)x -(4Z + 6m)y + 5? = 0.

4. A line moves so that the sum of the reciprocals of its

intercepts is constant. Show that it always passes through a

fixed point.

5 A line with positive intercepts moves so that the excess

of the intercept on the axis of x over the intercept on the axis

of y is equal to the area of the triangle which the line forms

with the axes. Show that it always passes through a fixed

point.

6. Prove that the straight lines,

5x-2y + 6 = 0>

2a;-42/ + 3 = 0,

3x + 2y + 3 = 0,

meet in a point, by showing that the equation of one of them

can be written in the form lu + mv = 0, where u = and v =
are the equations of the others.

7. Show that the three lines,

x + 3y- 4 = 0,

5x-3y+ 6 = 0,

3a — 9?/ + 14 = 0,

meet in a point.

8. Prove that the three lines

ka — 1(3 = 0, lj$ — my = 0, my — ka = 0,

where ce=0, /?=0, and y=0 are themselves equations of

straight lines and k, I, and m are constants, meet in a poiut.

9. Find the equation of the common chord of the two in-

tersecting circles

x*+ ^ + 6a?-8y+ 3 = 0,

2x> + 2tf- - 3x + Ay - 12 = 0.

10. Show that the two circles,

x2 + 2/
2_4 a._4

i/
_io = 0,

x2 + y
1 + 6z + 6y + 10 = 0,
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are tangent to one another. Find the equation of the common
tangent and the coordinates of the common point.

11. Find the equation of the circle which goes through the

points of intersection of the two circles of Ex. 9 and through

the origin.

12. Find the equation of the circle which is tangent to the

circles of Ex. 10 at their common point and meets the axis of

x in the point x = 2.

13. What is the equation of the circle which passes through

the points of intersection of the line

2a,-- # + 4 =
and the circle

x2 + y
2 + 2x — 4y + 1 = 0,

and goes through the point (1,1)?

14. Determine the equation of the ellipse which passes

through the points of intersection of the ellipse

x2 + 4 y
2 = 4

and the line Sx — 4y — 3 = 0,

and goes through the point (2, 1). By a transformation to

parallel axes (cf. Ch. XI, § 1), prove that this ellipse has axes

parallel to those of the given ellipse and has the same

eccentricity.

15. Find a single equation representing both diagonals of

the rectangle whose center is at the origin and one of whose

vertices is at the point (a, b).

16. What is the condition that the equation

aw - by = o

represent two perpendicular lines ?

17. Find the locus of each of the following equations

:

(a) 6x2 + 5xy- 4#2 =
(6) 4^-20^ + 25^ =
(c) x ' + xy+ 6y=0
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18. Prove that the equation

(1) Aa?- + Bxy+CY=*Q

represents the origin, a single straight line, or two straight

lines, according as the discriminant, B" — 4:AC, is negative,

zero, or positive.

19. Show that, if equation (1), Ex. 18, represents two

straight lines, the slopes of these lines are the roots of the

equation

CA2 + BX + A = 0.

20. Prove that the equation

14 a;-— 45a;?/ — 14?/
1 =

represents two perpendicular straight lines.

21. Show that equation (1), Ex. 18, represents two perpen-

dicular straight lines if and only if A 4- C = 0.

22. Prove that the equation

•f — 2xysecfr+x =

represents two straight lines which form with one another the

angle 6.

23. A regular hexagon has its center at the origin and two

vertices on the axis of x. Find a single equation which repre-

sents all three diagonals. Ans. y3 — 3 x"y = 0.

24. Determine the points of contact of the tangents drawn

to an ellipse from the points on the conjugate axis which are

at a distance from the center equal to the semi-axis major.

25. Find the equations of the common tangents of each of

the following pairs of conies :

(a) ^ + */
2 =16, ^ = 6a>;

(b) ^l + ^l-l ^ + 11-1.W
25
+

9
'

16 + 25
'

W
16 9 ' 25 16

Draw a good figure in each case, showing the common tangents.
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26. Show that the line

A ' B(
2
)

~
A +

is tangent to the circle

x2 + f- = a2

if and only if — +— = -•
J A 1 & a2

27. Find the condition that the line (2), Ex. 26, be tangent

to the ellipse

£ +£=! ^S. £+*«L
a 2 6 2 ^42 J32

28. What will the condition obtained in Ex. 27 become in

ae case of the hyperbola

a2 V

29. Prove that the line (2), Ex. 26, is tangent to the

parabola 2/^ = 2 mx, if and only if 2B" + ^4ra = 0.

30. Find the condition that the line y = \x + /3 be tangent

to the conic

(1 - e2)«2 + ^2 _ 2mx + m2 = 0.

Ans.
(fi

4- mA)2 - e2 (/?
2 + m2

)= 0.

31. In an ellipse there is inscribed a rectangle with sides

parallel to the axes. In this rectangle there is inscribed a

second ellipse, with axes along the axes of the first. Show
that a line joining extremities of the major and minor axes of

the first ellipse is tangent to the second.
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